Cooperative Speed Estimation of an RF Jammer in Wireless Vehicular Networks | SpringerLink
Skip to main content

Cooperative Speed Estimation of an RF Jammer in Wireless Vehicular Networks

  • Conference paper
  • First Online:
Computer Security (CyberICPS 2020, SECPRE 2020, ADIoT 2020)

Abstract

In this paper, we are concerned with the problem of estimating the speed of an RF jammer that moves towards a group/platoon of moving wireless communicating nodes. In our system model, the group of nodes receives an information signal from a master node, that they want to decode, while the Radio Frequency (RF) jammer desires to disrupt this communication as it approaches them. For this system model, we propose first a transmission scheme where the master node remains silent for a time period while it transmits in a subsequent slot. Second, we develop a joint data and jamming estimation algorithm that uses Linear Minimum Mean Square Error (LMMSE) estimation. We develop analytical closed-form expressions that characterize the Mean Square Error (MSE) of the data and jamming signal estimates. Third, we propose a cooperative jammer speed estimation algorithm based on the jamming signal estimates at each node of the network. Our numerical and simulation results for different system configurations prove the ability of our overall system to estimate with high accuracy and the RF jamming signals and the speed of the jammer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adem, N., Hamdaoui, B., Yavuz, A.: Pseudorandom time-hopping anti-jamming technique for mobile cognitive users. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2015)

    Google Scholar 

  2. Akhlaghpasand, H., Razavizadeh, S.M., Bjornson, E., Do, T.T.: Jamming detection in massive MIMO systems. IEEE Wirel. Commun. Lett. 7, 242–245 (2018)

    Article  Google Scholar 

  3. Alipour-Fanid, A., Dabaghchian, M., Zhang, H., Zeng, K.: String stability analysis of cooperative adaptive cruise control under jamming attacks. In: 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), January 2017

    Google Scholar 

  4. Argyriou, A., Alay, O.: Distributed estimation in wireless sensor networks with an interference canceling fusion center. IEEE Trans. Wirel. Commun. 15(3), 2205–2214 (2016)

    Article  Google Scholar 

  5. Bahceci, I., Khandani, A.: Linear estimation of correlated data in wireless sensor networks with optimum power allocation and analog modulation. IEEE Tran. Commun. 56(7), 1146–1156 (2008)

    Google Scholar 

  6. Biron, Z.A., Pisu, P.: Distributed fault detection and estimation for cooperative adaptive cruise control system in a platoon. In: PHM 2015 Conference (2015)

    Google Scholar 

  7. Boban, M., Barros, J., Tonguz, O.K.: Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation. IEEE Trans. Veh. Technol. 63, 4146–4164 (2016)

    Article  Google Scholar 

  8. Duan, B., Yin, D., Cong, Y., Zhou, H., Xiang, X., Shen, L.: Anti-jamming path planning for unmanned aerial vehicles with imperfect jammer information. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 2018

    Google Scholar 

  9. Farahmand, S., Cano, A., Giannakis, G.B.: Anti-jam distributed MIMO decoding using wireless sensor networks. IEEE Trans. Signal Process. 58, 3661–3680 (2010)

    Article  MathSciNet  Google Scholar 

  10. He, Q., Blum, R.S., Haimovich, A.M.: Noncoherent MIMO radar for location and velocity estimation: more antennas means better performance. IEEE Trans. Signal Process. 58, 3661–3680 (2010)

    Article  MathSciNet  Google Scholar 

  11. Karagiannis, D., Argyriou, A.: Jamming attack detection in a pair of RF communicating vehicles using unsupervised machine learning. Veh. Commun. 13, 56–63 (2018)

    Google Scholar 

  12. Kassem, N., Kosba, A.E., Youssef, M.: RF-based vehicle detection and speed estimation. In: 2012 IEEE 75th Vehicular Technology Conference (VTC Spring) (2012)

    Google Scholar 

  13. Kosmanos, D., et al.: A novel intrusion detection system against spoofing attacks in connected electric vehicles. In: Array. Elsevier, December 2019

    Google Scholar 

  14. Kosmanos, D., Argyriou, A., Maglaras, L.: Estimating the relative speed of RF jammers in VANETs. Secur. Commun. Netw. 2019, 18 (2019). Article ID 2064348

    Article  Google Scholar 

  15. Kosmanos, D., Karagiannis, D., Argyriou, A., Lalis, S., Maglaras, L.: RF jamming classification using relative speed estimation in vehicular wireless networks (2018)

    Google Scholar 

  16. Kosmanos, D., et al.: Route optimization of electric vehicles based on dynamic wireless charging. IEEE Access 6, 42551–42565 (2018)

    Article  Google Scholar 

  17. Kosmanos, D.,et al.: Intrusion detection system for platooning connected autonomous vehicles. In: SEEDA-CECNSM Conference (2019)

    Google Scholar 

  18. Kosmanos, D., Prodromou, N., Argyriou, A., Maglaras, L.A., Janicke, H.: MIMO techniques for jamming threat suppression in vehicular networks. Mob. Inf. Syst. 2016, 1–9 (2016)

    Google Scholar 

  19. Malebary, S., Xu, W., Huang, C.T.: Jamming mobility in 802.11 p networks: modeling, evaluation, and detection. In: 2016 IEEE 35th International on Performance Computing and Communications Conference (IPCCC), pp. 1–7 (2016)

    Google Scholar 

  20. Mukherjee, J.C., Gupta, A.: A review of charge scheduling of electric vehicles in smart grid. IEEE Syst. J. 9(4), 1541–1553 (2015). https://doi.org/10.1109/JSYST.2014.2356559

    Article  Google Scholar 

  21. Neely, M.J.: Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan & Claypool (2010)

    Google Scholar 

  22. Pirani, M., Hashemi, E., Khajepour, A., Fidan, B., Litkouhi, B., Chen, S.K.: Cooperative vehicle speed fault diagnosis and correction. IEEE Trans. Intell. Transp. Syst. 20, 783–789 (2018)

    Article  Google Scholar 

  23. Puñal, O., Aktaş, I., Schnelke, C.J., Abidin, G., Wehrle, K., Gross, J.: Machine learning-based jamming detection for IEEE 802.11: design and experimental evaluation. In: 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–10 (2014)

    Google Scholar 

  24. Punal, O., Pereira, C., Aguiar, A., Gross, J.: Experimental characterization and modeling of RF jamming attacks on VANETs. IEEE Trans. Veh. Technol. 64, 524–540 (2015)

    Article  Google Scholar 

  25. Santini, S., Salvi, A., Valente, A.S., Pescape, A., Segata, M., Cigno, R.L.: Platooning maneuvers in vehicular networks: a distributed and consensus-based approach. EEE Trans. Intell. Veh. 4(1), 59–72 (2019)

    Article  Google Scholar 

  26. Sheikholeslami, A., Ghaderi, M., Pishro-Nik, H., Goeckel, D.: Jamming-aware minimum energy routing in wireless networks. IEEE Access 6, 2313–2318 (2018)

    Google Scholar 

  27. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2015)

    Article  Google Scholar 

  28. Spuhler, M., Lenders, V., Wilhelm, M.: Detection of reactive jamming in DSSS-based wireless communications. IEEE Trans. Wirel. Commun. 13, 165–171 (2014)

    Article  Google Scholar 

  29. Wang, J., Tong, J., Gao, Q., Wu, Z., Bi, S., Wang, H.: Device-free vehicle speed estimation with wifi. IEEE Trans. Veh. Technol. 67, 8205–8214 (2018)

    Article  Google Scholar 

  30. Xu, S., Xu, W., Pan, C., Elkashlan, M.: Detection of jamming attack in non-coherent massive SIMO systems. IEEE Trans. Inf. Forensics Secur. 14, 2387–2399 (2019)

    Article  Google Scholar 

  31. Zheng, Y.R., Xiao, C.: Mobile speed estimation for broadband wireless communications over rician fading channels. IEEE Trans. Wirel. Commun. 8, 1–8 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandros Maglaras .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Recall that the \(N-1\) receivers are assumed to be close to each other, resulting in a constant value for the free space propagation loss \(po_{j,i}\) and the random variable \(\gamma _{i}\) for the observation interval in the above equations. Under these assumptions the set of Eq. (14) is simplified to:

$$\begin{aligned} \frac{\hat{z}_{1}}{\hat{z}_{2}}&=\frac{e^{j\frac{2\pi }{\lambda } \varDelta {u}_{1} \frac{f_c}{c} \cos {\phi _{1}} \tau _{1}}}{e^{j\frac{2\pi }{\lambda } \varDelta {u}_{2} \frac{f_c}{c} \cos {\phi _{2}} \tau _{2}} } \\&...\\ \frac{\hat{z}_{N-2}}{\hat{z}_{N-1}}&=\frac{e^{j\frac{2\pi }{\lambda } \varDelta {u}_{N-2} \frac{f_c}{c} \cos {\phi _{N-2}} \tau _{N-2}}}{e^{j\frac{2\pi }{\lambda } \varDelta {u}_{N-1} \frac{f_c}{c} \cos {\phi _{N-1}} \tau _{N-1}} } \end{aligned}$$

By taking the natural logarithm of the expressions on the left and right we have:

$$\begin{aligned} \ln {(\frac{\hat{z}_{1}}{\hat{z}_{2}})}&=\ln {(\frac{e^{\omega |u_{r,1}-u_{j}| \cos {\phi _{1}}\tau _{1}}}{ e^{\omega |u_{r,2}-u_{j}| \cos {\phi _{2}}\tau _{2}}} ) } \\&...\\ \ln {(\frac{\hat{z}_{N-2}}{\hat{z}_{N-1}})}&=\ln {(\frac{e^{\omega |u_{r,N-2}-u_{j}| \cos {\phi _{N-2}}\tau _{N-2}}}{ e^{\omega |u_{r,N-1}-u_{j}| \cos {\phi _{N-1}}\tau _{N-1}}} ) } \end{aligned}$$

where \(u_{r,i}\) is the speed of every receiver, \(u_{j}\) the speed of the jammer in the area and the variables \(f_{cx}=\frac{f_c}{c}\), \(\omega =j\frac{2\pi }{\lambda } f_{cx}\). If we assume that the jammer approaches the i-th receiver at a speed lower than its own speed the relative speed between jammer and receiver is positive and so \(|u_{r,i}-u_{j}|= u_{r,i}-u_{j}\). By simplifying the previous logarithmic equations we have:

$$\begin{aligned} \small \ln {(\frac{\hat{z}_{1}}{\hat{z}_{2}})}&=\omega [(u_{r,1}-u_{j}) \cos {\phi _{1}}\tau _{1} -(u_{r,2}-u_{j}) \cos {\phi _{2}}\tau _{2}]\\&...\\ \ln {(\frac{\hat{z}_{N-2}}{\hat{z}_{N-1}})}&=\omega [(u_{r,N-2}-u_{j}) \cos {\phi _{N-2}}\tau _{N-2}-(u_{r,N-1}-u_{j}) \cos {\phi _{N-1}}\tau _{N-1}] \end{aligned}$$

In the above equations the estimated jamming signal values on the left-hand side are complex numbers of the form: \((\hat{a}_{1}+\hat{b}_{1}j),...,\hat{a}_{N-2}+\hat{b}_{N-2}j\). We observe that the real part of the above equations on the right side is equal to zero. So all the real parts, that is the \(\hat{a}\)’s, are equal to zero. We also assume that the receivers move at similar speeds (\(u_{r,1}\simeq u_{r,2} \simeq ... \simeq u_{r,N-1}=u_r\)) as they are members of the platoon. By replacing the AOD values with the order of Eq. (1) and the time delays as \(\tau _{1}=\frac{dist_{1}}{c}, \tau _{2}=\frac{dist_{2}}{c}, ..., \tau _{N-1}=\frac{dist_{N-1}}{c} \) we have:

$$\begin{aligned} \tiny \hat{b}_{1}&=\omega [(u_{r}-u_{j}) \frac{x_{dist}}{dist_{1}}*\frac{dist_{1}}{c} - (u_{r}-u_{j}) \frac{x_{dist}+d}{dist_{2}}*\frac{dist_{2}}{c}]\\&...\\ \tiny \hat{b}_{N-2}&=\omega [(u_{r}-u_{j}) \frac{x_{dist}+(N-3)*d}{dist_{N-2}}*\frac{dist_{N-2}}{c} - (u_{r}-u_{j}) \frac{x_{dist}+(N-2)*d}{dist_{N-1}}*\frac{dist_{N-1}}{c}] \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosmanos, D., Chatzisavvas, S., Argyriou, A., Maglaras, L. (2020). Cooperative Speed Estimation of an RF Jammer in Wireless Vehicular Networks. In: Katsikas, S., et al. Computer Security. CyberICPS SECPRE ADIoT 2020 2020 2020. Lecture Notes in Computer Science(), vol 12501. Springer, Cham. https://doi.org/10.1007/978-3-030-64330-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64330-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64329-4

  • Online ISBN: 978-3-030-64330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics