3ETS+RD-LSTM: A New Hybrid Model for Electrical Energy Consumption Forecasting | SpringerLink
Skip to main content

3ETS+RD-LSTM: A New Hybrid Model for Electrical Energy Consumption Forecasting

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

This work presents an extended hybrid and hierarchical deep learning model for electrical energy consumption forecasting. The model combines initial time series (TS) decomposition, exponential smoothing (ETS) for forecasting trend and dispersion components, ETS for deseasonalization, advanced long short-term memory (LSTM), and ensembling. Multi-layer LSTM is equipped with dilated recurrent skip connections and a spatial shortcut path from lower layers to allow the model to better capture long-term seasonal relationships and ensure more efficient training. Deseasonalization and LSTM are combined in a simultaneous learning process using stochastic gradient descent (SGD) which leads to learning TS representations and mapping at the same time. To deal with a forecast bias, an asymmetric pinball loss function was applied. Three-level ensembling provides a powerful regularization reducing the model variance. A simulation study performed on the monthly electricity demand TS for 35 European countries demonstrates a high performance of the proposed model. It generates more accurate forecasts than its predecessor (ETS+RD-LSTM  [1]), statistical models such as ARIMA and ETS as well as state-of-the-art models based on machine learning (ML).

The project financed under the program of the Polish Minister of Science and Higher Education titled “Regional Initiative of Excellence”, 2019–2022. Project no. 020/RID/2018/19, the amount of financing 12,000,000.00 PLN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dudek, G., Pełka, P., Smyl, S.: A hybrid residual dilated LSTM end exponential smoothing model for mid-term electric load forecasting. arXiv preprint arXiv:2004.00508 (2020)

  2. Suganthi, L., Samuel, A.-A.: Energy models for demand forecasting - a review. Renew. Sust. Energ. Rev. 16(2), 1223–1240 (2002)

    Article  Google Scholar 

  3. Barakat, E.H.: Modeling of nonstationary time-series data. Part II. Dynamic periodic trends. Int. J. Elec. Power 23, 63–68 (2001)

    Article  Google Scholar 

  4. González-Romera, E., Jaramillo-Morán, M.-A., Carmona-Fernández, D.: Monthly electric energy demand forecasting with neural networks and Fourier series. Energ. Convers. Manage. 49, 3135–3142 (2008)

    Article  Google Scholar 

  5. Chen, J.F., Lo, S.K., Do, Q.H.: Forecasting monthly electricity demands: an application of neural networks trained by heuristic algorithms. Information 8(1), 31 (2017)

    Article  Google Scholar 

  6. Gavrilas, M, Ciutea, I, Tanasa, C.: Medium-term load forecasting with artificial neural network models. In: IEEE Conference on Electricity Distribution Publication, vol. 6 (2001)

    Google Scholar 

  7. Doveh, E., Feigin, P., Hyams, L.: Experience with FNN models for medium term power demand predictions. IEEE Trans. Power Syst. 14(2), 538–546 (1999)

    Article  Google Scholar 

  8. Pełka, P., Dudek, G.: Medium-term electric energy demand forecasting using generalized regression neural network. In: Światek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2018. AISC, vol. 853, pp. 218–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99996-8_20

    Chapter  Google Scholar 

  9. Pei-Chann, C., Chin-Yuan, F., Jyun-Jie, L.: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Elec. Power 33, 17–27 (2011)

    Article  Google Scholar 

  10. Ahmad, T., Chen, H.: Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy 160, 1008–1020 (2018)

    Article  Google Scholar 

  11. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time series forecasting: current status and future directions. arXiv preprint arXiv:1909.00590v3 (2019)

  12. Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., Zhou, H.: Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies 11(11), 3089 (2018)

    Article  Google Scholar 

  13. Bedi, J., Toshniwal, D.: Empirical mode decomposition based deep learning for electricity demand forecasting. IEEE Access 6, 49144–49156 (2018)

    Article  Google Scholar 

  14. Zheng, H., Yuan, J., Chen, L.: Short-term load forecasting using EMD-LSTM neural networks with a XGBboost algorithm for feature importance evaluation. Energies 10(8), 1168 (2017)

    Article  Google Scholar 

  15. Narayan, A., Hipel, K.-W.: Long short term memory networks for short-term electric load forecasting. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2573–2578 (2017)

    Google Scholar 

  16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34(4), 802–808 (2018)

    Article  Google Scholar 

  17. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast. 36(1), 75–85 (2020)

    Article  Google Scholar 

  18. Dudek, G., Pełka, P.: Pattern similarity-based machine learning methods for mid-term load forecasting: a comparative study. arXiv preprint arXiv:2003.01475 (2020)

  19. Pelka, P., Dudek, G.: Pattern-based long short-term memory for mid-term electrical load forecasting. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206895

  20. Hyndman, R.-J., Koehler, A.-B., Ord, J.-K., Snyder, R.-D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71918-2

    Book  MATH  Google Scholar 

  21. Oreshkin, B.-N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437v4 (2020)

  22. Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., et al.: Dilated recurrent neural networks. arXiv preprint arXiv:1710.02224 (2017)

  23. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. arXiv preprint arXiv:1701.03360 (2017)

  24. Pełka, P., Dudek, G.: Pattern-based forecasting monthly electricity demand using multilayer perceptron. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 663–672. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_60

    Chapter  Google Scholar 

  25. Pełka, P., Dudek, G.: Neuro-fuzzy system for medium-term electric energy demand forecasting. In: Borzemski, L., Światek, J., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 655, pp. 38–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67220-5_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Dudek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudek, G., Pełka, P., Smyl, S. (2020). 3ETS+RD-LSTM: A New Hybrid Model for Electrical Energy Consumption Forecasting. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics