Oblique Random Forests on Residual Network Features | SpringerLink
Skip to main content

Oblique Random Forests on Residual Network Features

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Time series are usually complicated in nature and contains many complex patterns. As such, many researchers work on different ways to pick up such patterns. In this paper, we explore using Residual Networks (a Convolutional Neural Network) as a feature extractor for Oblique Random Forest. Here, we extract features using Residual Networks, and pass the extracted feature set to Oblique Random Forest for classification of time series. Based on the experiments on 85 UCR datasets, we found that using features extracted from Residual Network significantly improves the performance of Oblique Random Forest. In addition, using including intermediate features from Residual Networks significantly improves the performance of Oblique Random Forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  2. Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)

    Article  Google Scholar 

  3. Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Hameurlain, A., Küng, J., Wagner, R., Madria, S., Hara, T. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII. LNCS, vol. 10420, pp. 24–46. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55608-5_2

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/

  6. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013). https://doi.org/10.1016/j.ins.2013.02.030

    Article  MathSciNet  MATH  Google Scholar 

  7. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  8. Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  9. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 392–401. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2623330.2623613

  10. Gãrecki, T., Åuczak, M.: Non-isometric transforms in time series classification using DTW. Knowl. Based Syst. 61, 98–108 (2014). https://doi.org/10.1016/j.knosys.2014.02.011

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016

    Google Scholar 

  12. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2013). https://doi.org/10.1007/s10618-013-0322-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  14. Karim, F., Majumdar, S., Darabi, H., Chen, S.: Lstm fully convolutional networks for time series classification. IEEE Access 6, 1662–1669 (2018)

    Article  Google Scholar 

  15. Katuwal, R., Suganthan, P.N.: Enhancing multi-class classification of random forest using random vector functional neural network and oblique decision surfaces. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  18. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2014). https://doi.org/10.1007/s10618-014-0361-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015

    Google Scholar 

  20. Ma, Q., Zhuang, W., Shen, L., Cottrell, G.W.: Time series classification with echo memory networks. Neural Networks 117, 225–239 (2019). https://doi.org/10.1016/j.neunet.2019.05.008

    Article  MATH  Google Scholar 

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  22. Nweke, H.F., Teh, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056

    Article  Google Scholar 

  23. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ. Digital Med. 1(1), 18 (2018)

    Article  Google Scholar 

  24. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  Google Scholar 

  25. Susto, G.A., Cenedese, A., Terzi, M.: Chapter 9 - time-series classification methods: Review and applications to power systems data. In: Arghandeh, R., Zhou, Y. (eds.) Big Data Application in Power Systems, pp. 179–220. Elsevier (2018). https://doi.org/10.1016/B978-0-12-811968-6.00009-7

  26. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  27. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019). https://doi.org/10.1016/j.patrec.2018.02.010, deep Learning for Pattern Recognition

  28. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585, May 2017. https://doi.org/10.1109/IJCNN.2017.7966039

  29. YANG, Q., WU, X.: 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Making 05(04), 597–604 (2006). https://doi.org/10.1142/S0219622006002258

  30. Zhang, L., Suganthan, P.N.: Oblique decision tree ensemble via multisurface proximal support vector machine. IEEE Trans. Cybern. 45(10), 2165–2176 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, W.X., Suganthan, P.N., Katuwal, R. (2020). Oblique Random Forests on Residual Network Features. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics