Data Mining ENCODE Data Predicts a Significant Role of SINA3 in Human Liver Cancer | SpringerLink
Skip to main content

Data Mining ENCODE Data Predicts a Significant Role of SINA3 in Human Liver Cancer

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12534))

Included in the following conference series:

  • 2105 Accesses

Abstract

Genomic experiments produce large sets of data, many of which are publicly available. Investigating these datasets using bioinformatics data mining techniques may reveal novel biological knowledge. We developed a bioinformatics pipeline to investigate Chip-seq DNA binding proteins datasets for HepG2 liver cancer cell line downloaded from ENCODE project. Of 276 datasets, 175 passed our proposed quantity control testing. A pair-wise DNA co-location analysis tool developed by us revealed a cluster of 19 proteins significantly collocating on DNA binding regions. The results were confirmed by tools from other labs. Narrowing down our bioinformatics analysis showed a strong enrichment of DNA-binding protein SIN3A to activator (H3K79me2) and repressor (H3K27me3) indicating SIN3A plays has an important regulatory role in vital liver functions. Whether increased enrichment varies in liver infection we compared histone modification between HepG2 and HepG2.2.15 cells (HepG2 derived hepatitis B virus (HBV) expressing stable cells) and observed an increase SIN3A enrichment in promoter regions (H3K4me3) confirming a known biological phenotype. The mechanistic role of SIN3A protein in case of liver injury or insult during liver infection warrants further dry and wet lab investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, S.: Babraham bioinformatics-fastqc a quality control tool for high throughput sequence data (2010). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  2. Chandran, A.K.N., et al.: A web-based tool for the prediction of rice transcription factor function. Database 2019, 1–12 (2019)

    Article  Google Scholar 

  3. Dunham, I., et al.: An integrated encyclopedia of DNA elements in the human genome (2012)

    Google Scholar 

  4. Favorov, A., et al.: Exploring massive, genome scale datasets with the genometricorr package. PLoS Comput. Biol. 8(5), e1002529 (2012)

    Article  MathSciNet  Google Scholar 

  5. Fekry, B., et al.: Incompatibility of the circadian protein bmal1 and hnf4\(\alpha \) in hepatocellular carcinoma. Nat. Commun. 9(1), 1–17 (2018)

    Article  Google Scholar 

  6. Flecken, T., et al.: Mapping the heterogeneity of histone modifications on hepatitis B virus DNA using liver needle biopsies obtained from chronically infected patients. J. Virol. 93(9), e02036 (2019)

    Article  Google Scholar 

  7. Jammula, S., Pasini, D.: Epimine, a computational program for mining epigenomic data. Epigenetics Chromatin 9(1), 42 (2016)

    Article  Google Scholar 

  8. Jing, F., Zhang, S., Cao, Z., Zhang, S.: An integrative framework for combining sequence and epigenomic data to predict transcription factor binding sites using deep learning. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019)

    Google Scholar 

  9. Khushi, M.: Benchmarking database performance for genomic data. J. Cell. Biochem. 116(6), 877–883 (2015)

    Article  Google Scholar 

  10. Khushi, M., Clarke, C.L., Graham, J.D.: Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer. PeerJ 2, e654 (2014)

    Article  Google Scholar 

  11. Khushi, M., Liddle, C., Clarke, C.L., Graham, J.D.: Binding sites analyser (bisa): software for genomic binding sites archiving and overlap analysis. PloS one 9(2), e87301 (2014)

    Article  Google Scholar 

  12. Landt, S.G., et al.: Chip-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22(9), 1813–1831 (2012)

    Article  Google Scholar 

  13. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)

    Article  Google Scholar 

  14. Li, Q., Brown, J.B., Huang, H., Bickel, P.J., et al.: Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5(3), 1752–1779 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. López-Terrada, D., Cheung, S.W., Finegold, M.J., Knowles, B.B.: Hep g2 is a hepatoblastoma-derived cell line. Human Pathol. 40(10), 1512 (2009)

    Article  Google Scholar 

  16. Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17(1), 10–12 (2011)

    Article  Google Scholar 

  17. Quinlan, A.R., Hall, I.M.: Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010)

    Article  Google Scholar 

  18. Schmidt, F., Kern, F., Ebert, P., Baumgarten, N., Schulz, M.H.: Tepic 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis. Bioinformatics 35(9), 1608–1609 (2019)

    Article  Google Scholar 

  19. Shibata, T., Aburatani, H.: Exploration of liver cancer genomes. Nat. Rev. Gastroenterol. Hepatol. 11(6), 340 (2014)

    Article  Google Scholar 

  20. Tropberger, P., Mercier, A., Robinson, M., Zhong, W., Ganem, D.E., Holdorf, M.: Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc. Natl. Acad. Sci. 112(42), E5715–E5724 (2015)

    Article  Google Scholar 

  21. Vivekanandan, P., Daniel, H.D.J., Kannangai, R., Martinez-Murillo, F., Torbenson, M.: Hepatitis B virus replication induces methylation of both host and viral DNA. J. Virol. 84(9), 4321–4329 (2010)

    Article  Google Scholar 

  22. Wang, W., et al.: Analyzing the surface structure of the binding domain on DNA and RNA binding proteins. IEEE Access 7, 30042–30049 (2019)

    Article  Google Scholar 

  23. Wei, H.: Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings Bioinfo. 20(3), 1021–1031 (2019)

    Article  Google Scholar 

  24. Wong, M.C., et al.: The changing epidemiology of liver diseases in the Asia-pacific region. Nat. Rev. Gastroenterol. Hepatol. 16(1), 57–73 (2019)

    Article  Google Scholar 

  25. Zhang, Y., et al.: Model-based analysis of chip-seq (macs). Genome Biol. 9(9), 1–9 (2008)

    Article  Google Scholar 

  26. Zheng, X., Zhong, S.: From structure to function, how bioinformatics help to reveal functions of our genomes (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matloob Khushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khushi, M., Naseem, U., Du, J., Khan, A., Poon, S.K. (2020). Data Mining ENCODE Data Predicts a Significant Role of SINA3 in Human Liver Cancer. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics