Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model | SpringerLink
Skip to main content

Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

We consider the problem of estimating the conditional probability distribution of missing values given the observed ones. We propose an approach, which combines the flexibility of deep neural networks with the simplicity of Gaussian mixture models (GMMs). Given an incomplete data point, our neural network returns the parameters of Gaussian distribution (in the form of Factor Analyzers model) representing the corresponding conditional density. We experimentally verify that our model provides better log-likelihood than conditional GMM trained in a typical way. Moreover, imputation obtained by replacing missing values using the mean vector of our model looks visually plausible.

A preliminary version of this paper appeared as an extended abstract [21] at the ICML Workshop on The Art of Learning with Missing Values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PPCA uses spherical matrix D.

  2. 2.

    The code was taken from https://github.com/eitanrich/torch-mfa.

  3. 3.

    In fact, minimizing MSE leads to fitting a Gaussian density with isotropic covariance, so this form of loss function still optimizes a log-likelihood.

References

  1. Bishop, C.M.: Mixture density networks (1994)

    Google Scholar 

  2. Delalleau, O., Courville, A., Bengio, Y.: Efficient em training of gaussian mixtures with missing data. arXiv preprint arXiv:1209.0521 (2012)

  3. Dick, U., Haider, P., Scheffer, T.: Learning from incomplete data with infinite imputations. In: Proceedings of the 25th International Conference on Machine Learning, pp. 232–239 (2008)

    Google Scholar 

  4. Ghahramani, Z., Hinton, G.E., et al.: The em algorithm for mixtures of factor analyzers. Technical report, Technical Report CRG-TR-96-1, University of Toronto (1996)

    Google Scholar 

  5. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an em approach. In: Advances in Neural Information Processing Systems, pp. 120–127 (1994)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  9. Jerez, J.M., et al.: Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 50(2), 105–115 (2010)

    Article  Google Scholar 

  10. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  12. Li, S.C.X., Jiang, B., Marlin, B.: Misgan: learning from incomplete data with generative adversarial networks. arXiv preprint arXiv:1902.09599 (2019)

  13. Li, Y., Akbar, S., Oliva, J.B.: Flow models for arbitrary conditional likelihoods. arXiv preprint arXiv:1909.06319 (2019)

  14. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision (2015)

    Google Scholar 

  15. Mattei, P.A., Frellsen, J.: Leveraging the exact likelihood of deep latent variable models. In: Advances in Neural Information Processing Systems. pp. 3855–3866 (2018)

    Google Scholar 

  16. Mattei, P.A., Frellsen, J.: Miwae: deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning, pp. 4413–4423 (2019)

    Google Scholar 

  17. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, Hoboken (2004)

    MATH  Google Scholar 

  18. Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete heterogeneous data using vaes. Pattern Recogn., 107501 (2020)

    Google Scholar 

  19. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelcnn decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  20. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  21. Przewięźlikowski, M., Śmieja, M., Struski, Ł.: Estimating conditional density of missing values using deep gaussian mixture model. In: ICML Workshop on the Art of Learning with Missing Values (Artemiss), p. 7 (2020)

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  23. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)

  24. Richardson, E., Weiss, Y.: On GANs and GMMs. In: Advances in Neural Information Processing Systems, pp. 5847–5858 (2018)

    Google Scholar 

  25. Śmieja, M., Kołomycki, M., Struski, L., Juda, M., Figueiredo, M.A.T.: Can auto-encoders help with filling missing data? In: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, p. 6 (2020)

    Google Scholar 

  26. Śmieja, M., Kołomycki, M., Struski, L., Juda, M., Figueiredo, M.A.T.: Iterative imputation of missing data using auto-encoder dynamics. In: International Conference on Neural Information Processing, p. 12. Springer, Cham (2020)

    Google Scholar 

  27. Śmieja, M., Struski, Ł., Tabor, J., Marzec, M.: Generalized RBF kernel for incomplete data. Knowl.-Based Syst. 173, 150–162 (2019)

    Article  Google Scholar 

  28. Śmieja, M., Struski, Ł., Tabor, J., Zieliński, B., Spurek, P.: Processing of missing data by neural networks. In: Advances in Neural Information Processing Systems, pp. 2719–2729 (2018)

    Google Scholar 

  29. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  Google Scholar 

  30. Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders (2017). arXiv:1711.01558

  31. Trippe, B.L., Turner, R.E.: Conditional density estimation with bayesian normalising flows. arXiv preprint arXiv:1802.04908 (2018)

  32. Van Buuren, S.: Flexible Imputation of Missing Data. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  33. Williams, D., Carin, L.: Analytical kernel matrix completion with incomplete multi-view data. In: Proceedings of the International Conference on Machine Learning (ICML) Workshop on Learning with Multiple Views, pp. 80–86 (2005)

    Google Scholar 

  34. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  35. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

Download references

Acknowledgements

The work of M. Śmieja was supported by the National Science Centre (Poland) grant no. 2018/31/B/ST6/00993. The work of Ł. Struski was supported by the National Science Centre (Poland) grant no. 2017/25/B/ST6/01271 as well as the Foundation for Polish Science Grant No. POIR.04.04.00-00-14DE/18-00 co-financed by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Śmieja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Przewięźlikowski, M., Śmieja, M., Struski, Ł. (2020). Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics