Brain-Inspired Framework for Image Classification with a New Unsupervised Matching Pursuit Encoding | SpringerLink
Skip to main content

Brain-Inspired Framework for Image Classification with a New Unsupervised Matching Pursuit Encoding

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12534))

Included in the following conference series:

Abstract

The remarkable object recognition ability of biological systems allows individuals to have prompt and reliable responses to different stimuli. Despite many implementations, an efficient and effective one is still under exploring. Spiking neural networks (SNNs), following brain-like processing, provide a potential solution for efficient object recognition. The existing SNNs can benefit an efficient feature extraction from a temporal code, but they are vulnerable to noise, less adaptive and vitally poor in recognition accuracy. How could one make full use of the biological plausibility to improve their performance? In this paper, we propose a new temporal-based encoding method with unsupervised matching pursuit. Additionally, a unified SNN framework for image recognition is designed by integrating our encoding with recently advanced synaptic learning. We evaluate our approach on MNIST, with systematic insights into encoding capabilities, robustness to noise, learning efficiency and classification performance. The results highlight the effectiveness and efficiency of our spike-based approach. To date and the best of our knowledge, our approach achieves the best temporal-based accuracy performance. Moreover, our approach requires and consumes fewer number of neurons and spikes, making it significantly advantageous to fast and efficient computation. Our work also contributes to motivating new brain-inspired developments on image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2), 47–58 (2013). https://doi.org/10.2478/v10136-012-0031-x. ISSN 1214-021X

    Article  Google Scholar 

  2. Beyeler, M., Dutt, N.D., Krichmar, J.L.: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 48, 109–124 (2013)

    Article  Google Scholar 

  3. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision, Chile, pp. 2722–2730. IEEE (2015)

    Google Scholar 

  5. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  6. Gütig, R.: Spiking neurons can discover predictive features by aggregate-label learning. Science 351(6277), aab4113 (2016)

    Article  Google Scholar 

  7. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  8. Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535), 33–36 (1995)

    Article  Google Scholar 

  9. Hu, J., Tang, H., Tan, K.C., Li, H.: How the brain formulates memory: a spatio-temporal model research frontier. IEEE Comput. Intell. Mag. 11(2), 56–68 (2016)

    Article  Google Scholar 

  10. Hussain, S., Liu, S.C., Basu, A.: Improved margin multi-class classification using dendritic neurons with morphological learning. In: 20th IEEE International Symposium on Circuits and Systems (ISCAS), Australia, pp. 2640–2643. IEEE (2014)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  12. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)

    Google Scholar 

  13. Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., Modha, D.S.: A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In: 2011 IEEE Custom Integrated Circuits Conference (CICC), USA, pp. 1–4. IEEE (2011)

    Google Scholar 

  14. Perrinet, L., Samuelides, M.: Sparse image coding using an asynchronous spiking neural network. In: 10th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Belgium, pp. 313–318 (2002)

    Google Scholar 

  15. Perrinet, L., Samuelides, M., Thorpe, S.: Coding static natural images using spiking event times: do neurons cooperate? IEEE Trans. Neural Networks 15(5), 1164–1175 (2004)

    Article  Google Scholar 

  16. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  17. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019)

    Article  Google Scholar 

  18. Rullen, R.V., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)

    Article  Google Scholar 

  19. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. 104(15), 6424–6429 (2007)

    Article  Google Scholar 

  20. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018)

    Article  Google Scholar 

  23. Xu, Q., Qi, Y., Yu, H., Shen, J., Tang, H., Pan, G.: CSNN: an augmented spiking based framework with perceptron-inception. In: 27th International Joint Conferences on Artificial Intelligence (IJCAI), Sweden, pp. 1646–1652 (2018)

    Google Scholar 

  24. Yu, Q., Li, H., Tan, K.C.: Spike timing or rate? Neurons learn to make decisions for both through threshold-driven plasticity. IEEE Trans. Cybern. 49(6), 2178–2189 (2018)

    Article  Google Scholar 

  25. Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 8(11), e78318 (2013)

    Article  Google Scholar 

  26. Yu, Q., Tang, H., Tan, K.C., Li, H.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1539–1552 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61806139, and in part by the Natural Science Foundation of Tianjin under Grant 18JCYBJC41700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, S., Ma, C., Yu, Q. (2020). Brain-Inspired Framework for Image Classification with a New Unsupervised Matching Pursuit Encoding. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics