Transfer Dataset in Image Segmentation Use Case | SpringerLink
Skip to main content

Transfer Dataset in Image Segmentation Use Case

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

The most labour-intensive stage of machine learning (ML) modelling is the appropriate preparation of correct dataset. This paper aims to show transfer dataset approach in image segmentation use case to lower labour intensity. Moreover, we test the effectiveness of this approach by training deep learning models on our prepared dataset. The models achieved high-performance metrics, even on very hard test data.

The work was supported by the EU co-funded Smart Growth Operational Programme 2014–2020 (project no. POIR.01.01.01-00-0695/19) and the dataset was provided by Allegro, Warsaw, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di, W., et al.: Is a picture really worth a thousand words? On the role of images in e-commerce. In: WSDM (2014)

    Google Scholar 

  2. Sysko-Romańczuk, S., et al.: Growth-as-a-service in marketplace powered businesses. In: Baumann, S. (ed.) Handbook on Digital Business Ecosystems: Technologies, Markets, Business Models, Management, and Societal Challenges. Edward Elgar Publishing, UK (2021). (in progress)

    Google Scholar 

  3. Wróblewska, A., et al.: Optimal products presentation in offer images for an e-commerce marketplace platform. URSI (2018)

    Google Scholar 

  4. Rother, C., et al.: GrabCut: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH (2004)

    Google Scholar 

  5. Simonyan, K., et al.: Very deep convolutional networks for large-scale image recognition. In: ACPR (2015)

    Google Scholar 

  6. Badrinarayanan, V., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2016)

    Article  Google Scholar 

  9. Gilani, A., et al.: Table detection using deep learning. In: ICDAR (2017)

    Google Scholar 

  10. Rezatofighi, H., et al.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  11. Hohman, F., et al.: Understanding and visualizing data iteration in machine learning. In: CHI (2020)

    Google Scholar 

  12. Yang, Q., et al.: Transfer Learning. Cambridge University Press (2020)

    Google Scholar 

  13. Zabalza, J., et al.: Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Photogrammetry Remote Sens. 93, 112–122 (2014)

    Article  Google Scholar 

  14. Zabalza, J., et al.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185, 1–10 (2016)

    Article  Google Scholar 

  15. Yan, Y., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wróblewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wróblewska, A., Sysko-Romańczuk, S., Prusinowski, K. (2020). Transfer Dataset in Image Segmentation Use Case. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics