Phase Synchronization Indices for Classification of Action Intention Understanding Based on EEG Signals | SpringerLink
Skip to main content

Phase Synchronization Indices for Classification of Action Intention Understanding Based on EEG Signals

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12534))

Included in the following conference series:

  • 2201 Accesses

Abstract

The classification of action intention understanding based on EEG signals is very important for human-robot and social interaction studies. In order to classify the action intention understanding brain signals efficiently, we first use three kinds of phase synchronization indices, phase locking value (PLV), phase lag index (PLI) and weight phase lag index (WPLI), to construct functional connectivity matrices in multiple micro time windows, and then extract the sum of significant edge values of each time window matrix as the classification feature, finally apply support vector machine (SVM) classifier to implement action intention understanding data classification task. Classification result shows that new method performs well on three datasets (alpha, beta and fusion frequency bands), and brain network statistical analysis demonstrates that many significant edges appear on the alpha frequency band. We conclude that the phase synchronization indices are extremely useful for the classification task, the sum of significant edge values is an effective classification feature, and the action intention understanding closely correlates with the alpha frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Z., Yang, Q., Leng, Y., Yang, Y., Ge, S.: Classification of intention understanding using EEG-NIRS bimodal system. In: 12th International Computer Conference on Wavelet Active Media Technology & Information Processing, Chengdu, pp. 67–70. IEEE (2015)

    Google Scholar 

  2. Brune, C., Woodward, A.L.: Social cognition and social responsiveness in 10-month-old infants. J. Cogn. Dev. 8(2), 133–158 (2007)

    Article  Google Scholar 

  3. Catmur, C.: Understanding intentions from actions: direct perception, inference, and the roles of mirror and mentalizing systems. Conscious. Cogn. 36, 426–433 (2015)

    Article  Google Scholar 

  4. Avanzini, P., Fabbridestro, M., Volta, R.D., et al.: The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS ONE 7, e37534 (2012)

    Article  Google Scholar 

  5. Zhang, L., Gan, J.Q., Zheng, W., Wang, H.: Spatiotemporal phase synchronization in adaptive reconfiguration from action observation network to mentalizing network for understanding other’s action intention. Brain Topogr. 31(3), 447–467 (2017). https://doi.org/10.1007/s10548-017-0614-7

    Article  Google Scholar 

  6. Ge, S., Ding, M., Zhang, Z., et al.: Temporal-spatial features of intention understanding based on EEG-fNIRS bimodal measurement. IEEE Access 5, 14245–14258 (2017)

    Article  Google Scholar 

  7. Dindo, H., Lopresti, L., Lacascia, M., Chella, A., Dedić, R.: Hankelet-based action classification for motor intention recognition. Rob. Auton. Syst. 94, 120–133 (2017)

    Article  Google Scholar 

  8. Bundy, D.T., Pahwa, M., Szrama, N., et al.: Decoding three-dimensional reaching movements using electrocorticographic signals in humans. J. Neural Eng. 13(2), 026021.1–026021.18 (2016)

    Article  Google Scholar 

  9. Liu, H., Zheng, W., Sun, G., et al.: Action understanding based on a combination of one-versus-rest and one-versus-one multi-classification methods. In: 10th International Congress on Image & Signal Processing, Shanghai, pp. 1–5. IEEE (2017)

    Google Scholar 

  10. Niso, G., et al.: HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics 11(4), 405–434 (2013). https://doi.org/10.1007/s12021-013-9186-1

    Article  Google Scholar 

  11. Lachaux, J.P., Rodriguez, E., Martinerie, J., et al.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  12. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28(11), 1178–1193 (2007)

    Article  Google Scholar 

  13. Vinck, M., Oostenveld, R., Wingerden, M.V., Battaglia, F., Pennartz, C.M.A.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4), 1548–1565 (2011)

    Article  Google Scholar 

  14. Hari, R.: Action-perception connection and the cortical mu rhythm. Prog. Brain Res. 159(1), 253–260 (2006)

    Article  Google Scholar 

  15. Avanzini, P., Fabbri-Destro, M., Volta, R.D., et al.: The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG Study. PLoS ONE 7(5), e37534 (2012)

    Article  Google Scholar 

  16. Xiong, X., Yu, Z., Ma, T., et al.: Weighted brain network metrics for decoding action intention understanding based on EEG. Front. Hum. Neurosci. 14, 232 (2020)

    Article  Google Scholar 

  17. Ortigue, S., Sinigaglia, C., Rizzolatti, G., Grafton, S.T.: Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study. PLoS ONE 5(8), e12160 (2010)

    Article  Google Scholar 

  18. Arnaud, D., Scott, M.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  19. Fogassi, L., Ferrari, P.F., Gesierich, B., et al.: Parietal lobe: from action organization to intention understanding. Science 308(5722), 662–667 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Nature Science Foundation of China under Grant 61773114, the Foundation of Hygiene and Health of Jiangsu Province under Grant H2018042, and the Key Research and Development Plan (Industry Foresight and Common Key Technology) of Jiangsu Province under Grant BE2017007-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, X., Lu, X., Gu, L., Han, H., Hong, Z., Wang, H. (2020). Phase Synchronization Indices for Classification of Action Intention Understanding Based on EEG Signals. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics