A Discriminative STGCN for Skeleton Oriented Action Recognition | SpringerLink
Skip to main content

A Discriminative STGCN for Skeleton Oriented Action Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

Action recognition plays a fundamental role in many applications and researches, including man-machine interaction, medical rehabilitation and physical training. However, existing methods realize action recognition mainly relies on the background. This paper attempts to recognize the actions only through the motions. Hence, skeleton information is utilized to realize action recognition. To fully utilize the skeleton information, this paper proposes a discriminative spatio-temporal graph convolutional network (DSTGCN) for background independent action recognition. DSTGCN not only pays attention to the spatio-temporal properties of the motions, but focuses on the inner-class distributions of the actions. Experiments result on two motion oriented datasets validate the effectiveness of the proposed method.

This study was funded by National Natural Science Foundation of Peoples Republic of China (61672130, 61972064), The Fundamental Research Funds for the Central Universities (DUT19RC(3)012, DUT20RC(5)010) and LiaoNing Revitalization Talents Program (XLYC1806006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Duric, Z., et al.: Integrating perceptual and cognitive modeling for adaptive and intelligent human-computer interaction. Proc. IEEE 90(7), 1272–1289 (2002)

    Article  Google Scholar 

  3. Guo, S., et al.: Multi-view laplacian least squares for human emotion recognition. Neurocomputing 370, 78–87 (2019)

    Article  Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  5. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  6. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: STM: spatiotemporal and motion encoding for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2000–2009 (2019)

    Google Scholar 

  7. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3288–3297 (2017)

    Google Scholar 

  8. Kong, Y., Fu, Y.: Bilinear heterogeneous information machine for RGB-D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1054–1062 (2015)

    Google Scholar 

  9. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  12. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68, 346–362 (2017)

    Article  Google Scholar 

  13. Liu, S., Guo, S., Wang, W., Qiao, H., Wang, Y., Luo, W.: Multi-view laplacian eigenmaps based on bag-of-neighbors for RGB-D human emotion recognition. Inf. Sci. 509, 243–256 (2020)

    Article  Google Scholar 

  14. Liu, S., et al.: FSD-10: a dataset for competitive sports content analysis. arXiv preprint arXiv:2002.03312 (2020)

  15. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+ D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  16. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  17. Wang, P., Li, W., Gao, Z., Zhang, Y., Tang, C., Ogunbona, P.: Scene flow to action map: a new representation for RGB-D based action recognition with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 595–604 (2017)

    Google Scholar 

  18. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  19. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. arXiv preprint arXiv:1801.07455 (2018)

  20. Yu, M., Liu, L., Shao, L.: Structure-preserving binary representations for RGB-D action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1651–1664 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, L., Yuan, Q., Liu, Y., Huang, Q., Liu, S., Li, Y. (2020). A Discriminative STGCN for Skeleton Oriented Action Recognition. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics