Abstract
In this paper, we present a persona aware neural reinforcement learning response generation framework capable of optimizing long-term rewards carefully devised by system developers. The proposed model utilizes an extension of the recently introduced Hierarchical Encoder Decoder (HRED) architecture. We leverage insights from Reinforcement Learning (RL) and employ policy gradient methods to optimize rewards which are defined as simple heuristic approximations that indicate good conversation to a human mind. The proposed model is demonstrated on two benchmark datasets. Empirical results indicate that the proposed approach outperforms their counterparts that do not optimize long-term rewards, have no access to personas, standard models trained using solely maximum-likelihood estimation objective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations. ICLR (2015). http://arxiv.org/abs/1409.0473
Dušek, O., Novikova, J., Rieser, V.: Evaluating the state-of-the-art of end-to-end natural language generation: the e2e nlg challenge. Comput. Speech Lang. 59, 123–156 (2020)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. CoRR abs/1703.07737 (2017). http://arxiv.org/abs/1703.07737
Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., Gao, J.: Deep reinforcement learning for dialogue generation. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP (2016). https://doi.org/10.18653/v1/d16-1127
Mazaré, P., Humeau, S., Raison, M., Bordes, A.: Training millions of personalized dialogue agents. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (2018). https://doi.org/10.18653/v1/d18-1298
Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (2002). https://www.aclweb.org/anthology/P02-1040/
Saha, T., Gupta, D., Saha, S., Bhattacharyya, P.: Reinforcement learning based dialogue management strategy. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 359–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_32
Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, USA (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems (2015). http://papers.nips.cc/paper/5846-end-to-end-memory-networks
Welch, B.L.: The generalization ofstudent’s’ problem when several different population variances are involved. Biometrika (1947)
Zaremba, W., Sutskever, I.: Reinforcement learning neural turing machines-revised. arXiv preprint arXiv:1505.00521 (2015)
Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., Weston, J.: Personalizing dialogue agents: i have a dog, do you have pets too? In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL (2018). https://www.aclweb.org/anthology/P18-1205/
Zheng, Y., Chen, G., Huang, M., Liu, S., Zhu, X.: Personalized dialogue generation with diversified traits. arXiv preprint arXiv:1901.09672 (2019)
Zheng, Y., Zhang, R., Huang, M., Mao, X.: A pre-training based personalized dialogue generation model with persona-sparse data. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI (2020). https://aaai.org/ojs/index.php/AAAI/article/view/6518
Acknowledgement
Dr. Sriparna Saha gratefully acknowledges the Young Faculty Research Fellowship (YFRF) Award, supported by Visvesvaraya Ph.D. Scheme for Electronics and IT, Ministry of Electronics and Information Technology (MeitY), Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia) for carrying out this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Saha, T., Chopra, S., Saha, S., Bhattacharyya, P. (2020). Reinforcement Learning Based Personalized Neural Dialogue Generation. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_81
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_81
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)