Voxel Classification Based Automatic Hip Cartilage Segmentation from Routine Clinical MR Images | SpringerLink
Skip to main content

Voxel Classification Based Automatic Hip Cartilage Segmentation from Routine Clinical MR Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2496 Accesses

Abstract

Hip Osteoarthritis (OA) is a common pathological condition among the elderly population, which is mainly characterized by cartilage degeneration. Accurate segmentation of the cartilage tissue over MRIs facilitates quantitative investigations into the disease progression. We propose an automated approach to segment the hip joint cartilage as a single unit from routine clinical MRIs utilizing a voxel-based classification approach. We extracted a rich feature set from the MRIs, which consisting of normalized image intensity-based, local image structure-based, and geometry-based features. We have evaluated the proposed method using routine clinical hip MR images taken from asymptomatic elderly and diagnosed OA patients. MR images from both cohorts show full or partial loss of thickness due to aging or hip OA progression. The proposed algorithm shows good accuracy compared to the manual segmentations with a mean DSC value of 0.74, even with a high prevalence of cartilage defects in the MRI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandra, S.S., et al.: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images. Magn. Reson. Med. 75(1), 403–413 (2016). https://doi.org/10.1002/mrm.25598

    Article  Google Scholar 

  2. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  3. Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S.S.: Automatic segmentation of the bone and extraction of the bone & cartilage interface from magnetic resonance images of the knee. Phys. Med. Biol. 52(6), 1617–1631 (2007). https://doi.org/10.1088/0031-9155/52/6/005

    Article  Google Scholar 

  4. Gerig, G., Jomier, M., Chakos, M.: Valmet: a new validation tool for assessing and improving 3D object segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516–523. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_62

    Chapter  MATH  Google Scholar 

  5. Girard, M., Pedoia, V., Norman, B., Rossi-Devries, J., Majumdar, S.: Automatic segmentation of hip cartilage with deep convolutional neural nets for the evaluation of acetabulum and femoral T1\(\rho \) and T2 relaxation times. Osteoarthritis Cartilage 26, S439–S440 (2018). https://doi.org/10.1016/j.joca.2018.02.843

    Article  Google Scholar 

  6. Johnson, H.J., McCormick, M.M., Ibanez, L.: The ITK Software Guide Book 2: Design and Functionality. Kitware Incorporated, New York (2015)

    Google Scholar 

  7. Lawrence, R.C., et al.: Estimates of the prevalence of arthritis and other rheumatic conditions in the united states. Arthritis Rheum. 58(1), 26–35 (2008). https://doi.org/10.1002/art.23176

    Article  Google Scholar 

  8. Nishii, T., Sugano, N., Sato, Y., Tanaka, H., Miki, H., Yoshikawa, H.: Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of MR imaging. Osteoarthritis Cartilage 12(8), 650–657 (2004). https://doi.org/10.1016/j.joca.2004.04.009

    Article  Google Scholar 

  9. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  10. Ramme, A.J., et al.: Evaluation of automated volumetric cartilage quantification for hip preservation surgery. J. Arthroplasty 31(1), 64–69 (2016). https://doi.org/10.1016/j.arth.2015.08.009

    Article  Google Scholar 

  11. Sato, Y., et al.: A fully automated method for segmentation and thickness determination of hip joint cartilage from 3D MR data. Int. Congr. Ser. 1230, 352–358 (2001). https://doi.org/10.1016/S0531-5131(01)00029-2

    Article  Google Scholar 

  12. Siversson, C., Akhondi-Asl, A., Bixby, S., Kim, Y.J., Warfield, S.K.: Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation. Osteoarthritis Cartilage 22(10), 1511–1515 (2014). https://doi.org/10.1016/j.joca.2014.08.012

    Article  Google Scholar 

  13. Sofat, N., Ejindu, V., Kiely, P.: What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology 50(12), 2157–2165 (2011). https://doi.org/10.1093/rheumatology/ker283

    Article  Google Scholar 

  14. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908

    Article  Google Scholar 

  15. Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge, pp. 7–15 (2007)

    Google Scholar 

  16. Xia, Y., Chandra, S.S., Engstrom, C., Strudwick, M.W., Crozier, S., Fripp, J.: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys. Med. Biol. 59(23), 7245–66 (2014). https://doi.org/10.1088/0031-9155/59/23/7245

    Article  Google Scholar 

  17. Xia, Y., Fripp, J., Chandra, S.S., Schwarz, R., Engstrom, C., Crozier, S.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58(20), 7375–90 (2013). https://doi.org/10.1088/0031-9155/58/20/7375

    Article  Google Scholar 

  18. Xia, Y., Manjon, J.V., Engstrom, C., Crozier, S., Salvado, O., Fripp, J.: Automated cartilage segmentation from 3D MR images of hip joint using an ensemble of neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1070–1073. IEEE (2017). https://doi.org/10.1109/ISBI.2017.7950701

  19. Zhang, K., Lu, W., Marziliano, P.: Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn. Reson. Imaging 31(10), 1731–1743 (2013). https://doi.org/10.1016/j.mri.2013.06.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najini Harischandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harischandra, N., Dharmaratne, A., Cicuttini, F.M., Wang, Y. (2020). Voxel Classification Based Automatic Hip Cartilage Segmentation from Routine Clinical MR Images. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics