Unsupervised Reused Convolutional Network for Metal Artifact Reduction | SpringerLink
Skip to main content

Unsupervised Reused Convolutional Network for Metal Artifact Reduction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Nowadays computed tomography (CT) is widely used for medical diagnosis and treatment. However, CT images are often corrupted by undesirable artifacts when metallic implants are carried by patients, which could affect the quality of CT images and increase the possibility of false diagnosis and analysis. Recently, Convolutional Neural Network (CNN) was applied for metal artifact reduction (MAR) with synthesized paired images, which is not accurate enough to simulate the mechanism of imaging. With unpaired images, the first unsupervised model ADN appeared. But it is complicated in architecture and has distance to reach the level of existing supervised methods. To narrow the gap between unsupervised methods with supervised methods, this paper introduced a simpler multi-phase deep learning method extracting features recurrently to generate both metal artifacts and non-artifact images. Artifact Generative Network and Image Generative Network are presented jointly to remove metal artifacts. Extensive experiments show a better performance than ADN on synthesized data and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gjesteby, L., et al.: Deep neural network for ct metal artifact reduction with a perceptual loss function. In: Proceedings of The Fifth International Conference on Image Formation in X-ray Computed Tomography (2018)

    Google Scholar 

  2. Sakamoto, M., et al.: Automated segmentation of hip and thigh muscles in metal artifact contaminated CT using CNN. In: International Forum on Medical Imaging in Asia 2019 (2019)

    Google Scholar 

  3. Shen, T., Li, X., Zhong, Z., Wu, J., Lin, Z.: R\(^{2}\)-Net: recurrent and recursive network for sparse-view CT artifacts removal. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 319–327. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_36

    Chapter  Google Scholar 

  4. Liao, H., Lin, W.-A., Yuan, J., Zhou, S.K., Luo, J.: Artifact disentanglement network for unsupervised metal artifact reduction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 203–211. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_23

    Chapter  Google Scholar 

  5. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  6. Wang, Z., et al.: Deep learning based metal artifacts reduction in post-operative cochlear implant CT imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 121–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_14

    Chapter  Google Scholar 

  7. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:1406.2661 (2014)

  9. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging. 5(3), 036501 (2018)

    Article  Google Scholar 

  10. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  11. Ghani, M.-U., Karl, W.-C.: Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Trans. Comput. Imaging 6, 181–193 (2020)

    Article  Google Scholar 

  12. Lyu, Y., Lin, W.-A., Liao, H., Lu, J., Zhou, S.K.: Encoding metal mask projection for metal artifact reduction in computed tomography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 147–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_15

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Heilongjiang Province Natural Science Foundation key project of China under Grant No. ZD2019F003, the Natural Science Foundation of Heilongjiang Province under Grant No. F2018028.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbao Li or Qianqian Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, B., Li, J., Ren, Q., Zhong, Y. (2020). Unsupervised Reused Convolutional Network for Metal Artifact Reduction. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics