Pairwise-GAN: Pose-Based View Synthesis Through Pair-Wise Training | SpringerLink
Skip to main content

Pairwise-GAN: Pose-Based View Synthesis Through Pair-Wise Training

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Three-dimensional face reconstruction is one of the popular applications in computer vision. However, even state-of-the-art models still require frontal face as inputs, restricting its usage scenarios in the wild. A similar dilemma also happens in face recognition. New research designed to recover the frontal face from a single side-pose facial image has emerged. The state-of-the-art in this area is the Face-Transformation generative adversarial network, which is based on the CycleGAN. This inspired our researchwhich explores two models’ performance from pixel transformation in frontal facial synthesis, Pix2Pix and CycleGAN. We conducted the experiments on five different loss functions on Pix2Pix to improve its performance, then followed by proposing a new network Pairwise-GAN in frontal facial synthesis. Pairwise-GAN uses two parallel U-Nets as the generator and PatchGAN as the discriminator. The detailed hyper-parameters are also discussed. Based on the quantitative measurement by face similarity comparison, our results showed that Pix2Pix with L1 loss, gradient difference loss, and identity loss results in 2.72\(\%\) of improvement at average similarity compared to the default Pix2Pix model. Additionally, the performance of Pairwise-GAN is 5.4\(\%\) better than the CycleGAN, 9.1\(\%\) than the Pix2Pix, and 14.22\(\%\) than the CR-GAN at the average similarity. More experiment results and codes were released at https://github.com/XuyangSHEN/Pairwise-GAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: ICCV, pp. 1031–1039 (2017)

    Google Scholar 

  2. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 557–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_33

    Chapter  Google Scholar 

  3. Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders (SPAE) for face recognition across poses. In: CVPR, pp. 1883–1890 (2014)

    Google Scholar 

  4. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: CVPR, pp. 4295–4304 (2015)

    Google Scholar 

  5. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439–2448 (2017)

    Google Scholar 

  6. Tian, Y., Peng, X., Zhao, L., Zhang, S., Metaxas, D.N.: CR-GAN: learning complete representations for multi-view generation. arXiv preprint arXiv:1806.11191 (2018)

  7. Zhuang, W., Chen, L., Hong, C., Liang, Y., Wu, K.: FT-GAN: face transformation with key points alignment for pose-invariant face recognition. Electronics 8, 807 (2019)

    Article  Google Scholar 

  8. Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: ECCV (2020)

    Google Scholar 

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)

    Google Scholar 

  11. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015)

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  13. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998 (2018)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  15. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  16. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NeurIPS, pp. 469–477 (2016)

    Google Scholar 

  17. Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: ComboGAN: unrestrained scalability for image domain translation. In: CVPR Workshops, pp. 783–790 (2018)

    Google Scholar 

  18. Yao, Y., Plested, J., Gedeon, T.: Information-preserving feature filter for short-term EEG signals. Neurocomputing (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Dawn Olley and Alasdair Tran for their invaluable editing advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, X., Plested, J., Yao, Y., Gedeon, T. (2020). Pairwise-GAN: Pose-Based View Synthesis Through Pair-Wise Training. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics