MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for Image Classification | SpringerLink
Skip to main content

MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for Image Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Transfer learning has been widely used as a deep learning technique to solve computer vision related problems, especially when the problem is image classification employing Convolutional Neural Networks (CNN). In this paper, a novel transfer learning approach that can adaptively integrate multiple models with different fine-tuning settings is proposed, which is denoted as MultiTune. To evaluate the performance of MultiTune, we compare it to SpotTune, a state-of-the-art transfer learning technique. Two image datasets from the Visual Decathlon Challenge are used to evaluate the performance of MultiTune. The FGVC-Aircraft dataset is a fine-grained task and the CIFAR100 dataset is a more general task. Results obtained in this paper show that MultiTune outperforms SpotTune on both tasks. We also evaluate MultiTune on a range of target datasets with smaller numbers of images per class. MultiTune outperforms SpotTune on most of these smaller-sized datasets as well. MultiTune is also less computational than SpotTune and requires less time for training for each dataset used in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_22

    Chapter  Google Scholar 

  2. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of transferability for a generic convnet representation. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1790–1802 (2016)

    Article  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  4. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.S.: SpotTune: transfer learning through adaptive fine-tuning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4800–4809 (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR. abs/1512.03385 (2015)

    Google Scholar 

  6. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Li, X., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. CoRR (2018)

    Google Scholar 

  9. Plested, J., Gedeon, T.: An analysis of the interaction between transfer learning protocols in deep neural networks. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 312–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_26

    Chapter  Google Scholar 

  10. Rebuffi, S., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. CoRR (2017)

    Google Scholar 

  11. Rebuffi, S., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8119–8127 (2018)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  13. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications. IGI Global (2009)

    Google Scholar 

  14. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Plested, J., Gedeon, T. (2020). MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for Image Classification. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics