Edge Curve Estimation by the Nonparametric Parzen Kernel Method | SpringerLink
Skip to main content

Edge Curve Estimation by the Nonparametric Parzen Kernel Method

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2436 Accesses

Abstract

The article concerns the problem of finding the spatial curve which is the line of the abrupt or jump change in the 3d-shape, namely: the edge curve. There are many real applications where such a problems play a significant role. For instance, in computer vision in detection of edges in monochromatic pictures used in e.g. medicine diagnostics, biology and physics; in geology in analysis of satellite photographs of the earth surface for maps and/or determination of borders of forest areas, water resources, rivers, rock cliffs etc. In architecture the curves arising as a result of intersecting surfaces often are also objects of interest. The main focus of this paper is detection of abrupt changes in patterns defined by multidimensional functions. Our approach is based on the nonparametric Parzen kernel estimation of functions and their derivatives. An appropriate use of nonparametric methodology allows to establish the shape of an interesting edge curve.

Part of this research was carried out by the second author during his visit of the Westpomeranian University of Technology while on sabbatical leave from Concordia University.

Research of the first author financed under the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19, the amount of financing 12,000,000.00 PLN. Research of the second author supported by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN-2015-06412.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpert, S., Galun, M., Nadler, B., Basri, R.: Detecting faint curved edges in noisy images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 750–763. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_54

    Chapter  Google Scholar 

  2. Bazazian, D., Casas, J.-R., Ruiz-Hidalgo, J.: Fast and robust edge extraction in unorganized point clouds. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, SA, pp. 1–8 (2015)

    Google Scholar 

  3. Bhardwaj, S., Mittal, A.: A survey on various edge detector techniques. In: 2nd International Conference on Computer, Communication, Control and Information Technology, pp. 220–226 (2012). Elseiver, SciVerse ScienceDirect, Procedia Technology 4

    Google Scholar 

  4. Canny, J.-F.: A computational approach to edge detection. IEEE Trans Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Dim, J.-R., Takamura, T.: Alternative approach for satellite cloud classification: edge gradient application. Adv. Meteorol. (11), 1–8 (2013)

    Google Scholar 

  6. Faithfull, W.-J., Rodríguez, J.-J., Kuncheva, L.I.: Combining univariate approaches for ensemble change detection in multivariate data. Inf. Fusion 45, 202–214 (2019)

    Article  Google Scholar 

  7. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73, 942–943 (1985)

    Article  Google Scholar 

  8. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions. IEEE Trans. Autom. Control AC31, 785–787 (1986)

    Article  Google Scholar 

  9. Gałkowski, T.: On nonparametric fitting of higher order functions derivatives by the kernel method - a simulation study. In: Proceedings of the 5-th International Symposium on Applied Stochastic Models and data Analysis, Granada, Spain, pp. 230–242 (1991)

    Google Scholar 

  10. Gałkowski, T., Krzyżak, A., Filutowicz, Z.: A new approach to detection of changes in multidimensional patterns. J. Artif. Intell. Soft Comput. Res. 10(2), 125–136 (2020)

    Article  Google Scholar 

  11. Gasser, T., Müller, H.-G.: Kernel estimation of regression functions. In: Gasser, T., Rosenblatt, M. (eds.) Smoothing Techniques for Curve Estimation. LNM, vol. 757, pp. 23–68. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0098489

    Chapter  Google Scholar 

  12. Gasser, T., Müller, H.-G.: Estimating regression functions and their derivatives by the kernel method. Scand. J. Stat. 11(3), 171–185 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Gonzales, R.-C., Woods, R.-E.: Digital Image Processing, 4th edn. Pearson, London (2018)

    Google Scholar 

  14. Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Heidelberg (2002). https://doi.org/10.1007/b97848

  15. Horev, I., Nadler, B., Arias-Castro, E., Galun, M., Basri, R.: Detection of long edges on a computational budget: a sublinear approach. SIAM J. Imaging Sci. 8(1), 458–483 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jin, Z., Tillo, T., Zou, W., Li, X., Lim, E.-G.: Depth image-based plane detection. Big Data Anal. 3(10) (2018). https://doi.org/10.1186/s41044-018-0035-y

  17. Kolomenkin, M., Shimshoni, I., Tal, A.: On edge detection on surfaces. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2767–2774 (2009)

    Google Scholar 

  18. Kullback, S., Leibler, R.-A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  19. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London B–207, 187–217 (1980)

    Google Scholar 

  20. Pratt, W.-K.: Digital Image Processing, 4th edn. John Wiley Inc., New York (2007)

    Book  Google Scholar 

  21. Ofir, N., Galun, M., Nadler, B., Basri, R.: Fast detection of curved edges at low SNR. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. CVPR), Las Vegas, NV (2016)

    Google Scholar 

  22. Qiu, P.: Nonparametric estimation of jump surface. Ind. J. Stat. Ser. A 59(2), 268–294 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Qiu, P.: Jump surface estimation, edge detection, and image restoration. J. Am. Stat. Assoc. 102, 745–756 (2007)

    Article  MathSciNet  Google Scholar 

  24. Singh, S., Singh, R. Comparison of various edge detection techniques. In: International Conference on Computing for Sustainable Global Development, pp. 393–396 (2015)

    Google Scholar 

  25. Steger, C.: Subpixel-precise extraction of lines and edges. ISPRS Int. Soc. Photogram. Remote Sensing J. Photogram. Remote Sensing 33(3), 141–156 (2000)

    Google Scholar 

  26. Wang, Y.-Q., Trouve, A., Amit, Y., Nadler, B.: Detecting curved edges in noisy images in sublinear time. J. Math. Imaging Vis. 59(3), 373–393 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Gałkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gałkowski, T., Krzyżak, A. (2020). Edge Curve Estimation by the Nonparametric Parzen Kernel Method. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics