Dual Convolutional Neural Networks for Hyperspectral Satellite Images Classification (DCNN-HSI) | SpringerLink
Skip to main content

Dual Convolutional Neural Networks for Hyperspectral Satellite Images Classification (DCNN-HSI)

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Hyperspectral Satellite Images (HSI) presents a very interesting technology for mapping, environmental protection, and security. HSI is very rich in spectral and spatial characteristics, which are non-linear and highly correlated which makes classification difficult. In this paper, we propose a new approach to the reduction and classification of HSI. This deep approach consisting of a dual Convolutional Neural Networks (DCNN), which aims to improve precision and computing time. This approach involves two main steps; the first is to extract the spectral data and reduce it by CNN until a single value representing the active pixel is displayed. The second consists in classifying the only remaining spatial band on CNN until the class of each pixel is obtained. The tests were applied to three different hyperspectral data sets and showed the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Batch: Group of pixels containing the active pixel surrounded by its spatial neighbors.

References

  1. Wang, J., Gao, F., Dong, J., Du, Q.: Adaptive DropBlock-enhanced generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1–14 (2020)

    Google Scholar 

  2. Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Hyperspectral imaging classification based on convolutional neural networks by adaptive sizes of windows and filters. IET Image Process. 13(2), 392–398 (2018)

    Article  Google Scholar 

  3. Chin, T.J., Bagchi, S., Eriksson, A., Van Schaik, A.: Star tracking using an event camera. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, June 2019

    Google Scholar 

  4. Hamouda, M., Saheb Ettabaa, K., Bouhlel, M.S.: Adaptive batch extraction for hyperspectral image classification based on convolutional neural network. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 310–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_34

    Chapter  Google Scholar 

  5. Haidar, A., Verma, B.K., Haidar, R.: A swarm based optimization of the xgboost parameters. Aust. J. Intell. Inf. Process. Syst. 16(4), 74–81 (2019)

    Google Scholar 

  6. Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Modified convolutional neural network based on adaptive patch extraction for hyperspectral image classification. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE (2018)

    Google Scholar 

  7. Feng, J., et al.: Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search. IEEE Trans. Geosci. Remote Sensing 1–17 (2020)

    Google Scholar 

  8. Shen, Y., et al.: Efficient deep learning of nonlocal features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1–15 (2020)

    Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  13. Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Smart feature extraction and classification of hyperspectral images based on convolutional neural networks. IET Image Process. 14(10), 1999–2005 (2020)

    Article  Google Scholar 

  14. Hang, R., Li, Z., Liu, Q., Ghamisi, P., Bhattacharyya, S.S.: Hyperspectral image classification with attention aided CNNs. arXiv preprint arXiv:2005.11977 (2020)

  15. Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Framework for automatic selection of kernels based on convolutional neural networks and ckmeans clustering algorithm. Int. J. Image Graph. 19(04), 1950019 (2019)

    Article  Google Scholar 

  16. Fang, J., Wang, N., Cao, X.: Multidimensional relation learning for hyperspectral image classification. Neurocomputing 410, 211–219 (2020)

    Article  Google Scholar 

  17. Azar, S.G., Meshgini, S., Rezaii, T.Y., Beheshti, S.: Hyperspectral image classification based on sparse modeling of spectral blocks. Neurocomputing 407, 12–23 (2020)

    Article  Google Scholar 

Download references

Acknowlegment

This contribution was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maissa Hamouda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamouda, M., Bouhlel, M.S. (2020). Dual Convolutional Neural Networks for Hyperspectral Satellite Images Classification (DCNN-HSI). In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics