Abstract
Hyperspectral Satellite Images (HSI) presents a very interesting technology for mapping, environmental protection, and security. HSI is very rich in spectral and spatial characteristics, which are non-linear and highly correlated which makes classification difficult. In this paper, we propose a new approach to the reduction and classification of HSI. This deep approach consisting of a dual Convolutional Neural Networks (DCNN), which aims to improve precision and computing time. This approach involves two main steps; the first is to extract the spectral data and reduce it by CNN until a single value representing the active pixel is displayed. The second consists in classifying the only remaining spatial band on CNN until the class of each pixel is obtained. The tests were applied to three different hyperspectral data sets and showed the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Batch: Group of pixels containing the active pixel surrounded by its spatial neighbors.
References
Wang, J., Gao, F., Dong, J., Du, Q.: Adaptive DropBlock-enhanced generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1–14 (2020)
Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Hyperspectral imaging classification based on convolutional neural networks by adaptive sizes of windows and filters. IET Image Process. 13(2), 392–398 (2018)
Chin, T.J., Bagchi, S., Eriksson, A., Van Schaik, A.: Star tracking using an event camera. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, June 2019
Hamouda, M., Saheb Ettabaa, K., Bouhlel, M.S.: Adaptive batch extraction for hyperspectral image classification based on convolutional neural network. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 310–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_34
Haidar, A., Verma, B.K., Haidar, R.: A swarm based optimization of the xgboost parameters. Aust. J. Intell. Inf. Process. Syst. 16(4), 74–81 (2019)
Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Modified convolutional neural network based on adaptive patch extraction for hyperspectral image classification. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE (2018)
Feng, J., et al.: Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search. IEEE Trans. Geosci. Remote Sensing 1–17 (2020)
Shen, Y., et al.: Efficient deep learning of nonlocal features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 1–15 (2020)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015
Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Smart feature extraction and classification of hyperspectral images based on convolutional neural networks. IET Image Process. 14(10), 1999–2005 (2020)
Hang, R., Li, Z., Liu, Q., Ghamisi, P., Bhattacharyya, S.S.: Hyperspectral image classification with attention aided CNNs. arXiv preprint arXiv:2005.11977 (2020)
Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: Framework for automatic selection of kernels based on convolutional neural networks and ckmeans clustering algorithm. Int. J. Image Graph. 19(04), 1950019 (2019)
Fang, J., Wang, N., Cao, X.: Multidimensional relation learning for hyperspectral image classification. Neurocomputing 410, 211–219 (2020)
Azar, S.G., Meshgini, S., Rezaii, T.Y., Beheshti, S.: Hyperspectral image classification based on sparse modeling of spectral blocks. Neurocomputing 407, 12–23 (2020)
Acknowlegment
This contribution was supported by the Ministry of Higher Education and Scientific Research of Tunisia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hamouda, M., Bouhlel, M.S. (2020). Dual Convolutional Neural Networks for Hyperspectral Satellite Images Classification (DCNN-HSI). In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)