Customizable GAN: Customizable Image Synthesis Based on Adversarial Learning | SpringerLink
Skip to main content

Customizable GAN: Customizable Image Synthesis Based on Adversarial Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

In this paper, we propose a highly flexible and controllable image synthesis method based on the simple contour and text description. The contour determines the object’s basic shape, and the text describes the specific content of the object. The method is verified in the Caltech-UCSD Birds (CUB) and Oxford-102 flower datasets. The experimental results demonstrate its effectiveness and superiority. Simultaneously, our method can synthesize the high-quality image synthesis results based on artificial hand-drawing contour and text description, which demonstrates the high flexibility and customizability of our method further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodfellow, I.J., et al.: Generative adversarial nets. In: Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  2. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)

    Google Scholar 

  3. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784 (2014)

  4. Reed, S.E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069 (2016)

    Google Scholar 

  5. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: International Conference on Computer Vision, pp. 5908–5916 (2017)

    Google Scholar 

  6. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  7. Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: Computer Vision and Pattern Recognition, pp. 5802–5810 (2019)

    Google Scholar 

  8. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: Neural Information Processing Systems, vol. 29, pp. 885–895 (2016)

    Google Scholar 

  9. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  10. Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729 (2008)

    Google Scholar 

  11. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  13. Reed, S.E., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: Computer Vision and Pattern Recognition, pp. 49–58 (2016)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853 (2015)

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

Download references

Acknowledgement

This research is supported by Sichuan Science and Technology Program (No. 2020YFS0307), National Natural Science Foundation of China (No. 61907009), Science and Technology Planning Project of Guangdong Province (No. 2019B010150002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z. et al. (2020). Customizable GAN: Customizable Image Synthesis Based on Adversarial Learning. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics