Abstract
In this paper, we propose a highly flexible and controllable image synthesis method based on the simple contour and text description. The contour determines the object’s basic shape, and the text describes the specific content of the object. The method is verified in the Caltech-UCSD Birds (CUB) and Oxford-102 flower datasets. The experimental results demonstrate its effectiveness and superiority. Simultaneously, our method can synthesize the high-quality image synthesis results based on artificial hand-drawing contour and text description, which demonstrates the high flexibility and customizability of our method further.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodfellow, I.J., et al.: Generative adversarial nets. In: Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784 (2014)
Reed, S.E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069 (2016)
Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: International Conference on Computer Vision, pp. 5908–5916 (2017)
Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)
Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: Computer Vision and Pattern Recognition, pp. 5802–5810 (2019)
Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: Neural Information Processing Systems, vol. 29, pp. 885–895 (2016)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)
Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729 (2008)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Reed, S.E., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: Computer Vision and Pattern Recognition, pp. 49–58 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
Acknowledgement
This research is supported by Sichuan Science and Technology Program (No. 2020YFS0307), National Natural Science Foundation of China (No. 61907009), Science and Technology Planning Project of Guangdong Province (No. 2019B010150002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z. et al. (2020). Customizable GAN: Customizable Image Synthesis Based on Adversarial Learning. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)