Abstract
Semantic segmentation is a fundamental and challenging problem in computer vision. Recent studies attempt to integrate feature information of different depths to improve the performance of segmentation tasks, and a few of them enhance the features before fusion. However, which areas of the feature should be strengthened and how to strengthen are still inconclusive. Therefore, in this work we propose an Adaptive Feature Enhancement Module (AFEM) that utilizes high-level features to adaptively enhance the key areas of low-level features. Meanwhile, an Adaptive Feature Enhancement Network (AFENet) is designed with AFEM to combine all the enhanced features. The proposed method is validated on representative semantic segmentation datasets, Cityscapes and PASCAL VOC 2012. In particular, 79.5% mIoU on the Cityscapes testing set is achieved without using fine-val data, which is 1.1% higher than the baseline network and the model size is smaller. The code of AFENet is available at https://github.com/KTMomo/AFENet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR 2015 (2015)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. CVPR 2016, 3213–3223 (2016)
Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. CVPR 2018, 2393–2402 (2018)
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Hariharan, B., Arbelaez, P., Bourdev, L.D., Maji, S., Malik, J.: Semantic contours from inverse detectors. ICCV 2011, 991–998 (2011)
Ke, T.-W., Hwang, J.-J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 605–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_36
Kong, S., Fowlkes, C.C.: Recurrent scene parsing with perspective understanding in the loop. CVPR 2018, 956–965 (2018)
Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. In: BMVC 2018, p. 285 (2018)
Lin, D., Ji, Y., Lischinski, D., Cohen-Or, D., Huang, H.: Multi-scale context intertwining for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_37
Lin, G., Milan, A., Shen, C., Reid, I.D.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. CVPR 2017, 5168–5177 (2017)
Lin, G., Shen, C., van den Hengel, A., Reid, I.D.: Efficient piecewise training of deep structured models for semantic segmentation. CVPR 2016, 3194–3203 (2016)
Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CVPR 2017, 936–944 (2017)
Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. ICCV 2015, 1377–1385 (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. ICCV 2015, 1520–1528 (2015)
Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. CVPR 2017, 3309–3318 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)
Vaswani, A., et al.: Attention is all you need. NIPS 2017, 5998–6008 (2017)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. CVPR 2018, 3684–3692 (2018)
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. CVPR 2018, 1857–1866 (2018)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR 2016 (2016)
Zhang, R., Tang, S., Zhang, Y., Li, J., Yan, S.: Scale-adaptive convolutions for scene parsing. ICCV 2017, 2050–2058 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CVPR 2017, 6230–6239 (2017)
Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17
Acknowledgments
This work was supported by Major Scientific and Technological Special Project of Guizhou Province (No. 20183002) and Sichuan Science and Technology Program (No. 2019YFG0535).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cao, K., Huang, X., Shao, J. (2020). Adaptive Feature Enhancement Network for Semantic Segmentation. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)