Abstract
IT is revolutionizing the healthcare industry. The benefits being realized could not be imagined a few decades ago. Healthcare Data Analytics (HDA) has enabled medical practitioners to perform prescriptive, descriptive and predictive analytics. This capability has rendered the practitioners far more effective and efficient as compared to their previous generations. At the same time, humankind is being served by the more meaningful diagnosis of diseases, better healthcare, more effective treatments and earlier detection of health issues. However, healthcare practitioners still rely on their expert judgement during emergency situations because there is no assurance of response time determinism (RTD) in current HDA systems. This paper addresses this problem by proposing the inclusion of RTD in HDAs using a recent technique developed in the field of real-time systems. An experiment was conducted simulating a life-saving scenario of this technique to demonstrate this concept. Time gains of up to 17 times were achieved, exhibiting promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AbdelRahman, S.E., et al.: A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission. BMC Med. Inform. Decis.-Making 14(1), 41 (2014)
Althebyan, Q., et al.: Cloud support for large scale e-healthcare systems. Ann. Telecommun. 71(9–10), 503–515 (2016). https://doi.org/10.1007/s12243-016-0496-9
Balyen, L., Peto, T.: Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J. Ophthalmol. 8, 264–272 (2019)
Basanta-Val, P., et al.: Architecting time-critical big-data systems. IEEE Trans. Big Data 2(4), 310–324 (2016)
Catlin, A.C., et al.: Comparative analytics of infusion pump data across multiple hospital systems. Am. J. Health-Syst. Pharm. 72(4), 317–324 (2015)
Chen, H., et al.: Relational network for knowledge discovery through heterogeneous biomedical and clinical features. Sci. Rep. 6, 29915 (2016)
Edwards, A.L., et al.: Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40(5), 573–581 (2016)
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)
Galetsi, P., Katsaliaki, K.: A review of the literature on big data analytics in healthcare. J. Oper. Res. Soc. 70, 1511–1529 (2019)
Galetsi, P., Katsaliaki, K., Kumar, S.: Big data analytics in health sector: theoretical framework, techniques and prospects. Int. J. Inf. Manag. 50, 206–216 (2020)
Gattinoni, L., et al.: Covid-19 does not lead to a “typical” acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 201(10), 1299–1300 (2020)
Huang, E.Y., et al.: Telemedicine and telementoring in the surgical specialties: a narrative review. Am. J. Surg. 218(4), 760–766 (2019)
Kulynych, J., Greely, H.T.: Clinical genomics, big data, and electronic medical records: reconciling patient rights with research when privacy and science collide. J. Law Biosci. 4(1), 94–132 (2017)
Mehta, N., Pandit, A.: Concurrence of big data analytics and healthcare: a systematic review. Int. J. Med. Inform. 114, 57–65 (2018)
Rashid, M., Shah, S.A.B., Arif, M., Kashif, M.: Determination of worst-case data using an adaptive surrogate model for real-time system. J. Circuits Syst. Comput. 29(01), 2050005 (2020)
Razzak, M.I., Imran, M., Xu, G.: Big data analytics for preventive medicine. Neural Comput. Appl. 32, 4417–4451 (2019)
Reger, G.M., Smolenski, D., Norr, A., Katz, A., Buck, B., Rothbaum, B.O.: Does virtual reality increase emotional engagement during exposure for PTSD? Subjective distress during prolonged and virtual reality exposure therapy. J. Anxiety Disord. 61, 75–81 (2019). https://doi.org/10.1016/j.janxdis.2018.06.001
Sajjad, M., et al.: Mobile-cloud assisted framework for selective encryption of medical images with steganography for resource-constrained devices. Multimed. Tools Appl. 76(3), 3519–3536 (2016). https://doi.org/10.1007/s11042-016-3811-6
Shah, S.A.B., Rashid, M., Arif, M.: Estimating WCET using prediction models to compute fitness function of a genetic algorithm. Real-Time Syst. 1–36 (2020)
Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3–13 (2018)
Yedurkar, D.P., Metkar, S.P.: Big data in electroencephalography analysis. In: Kulkarni, A.J., et al. (eds.) Big Data Analytics in Healthcare. SBD, vol. 66, pp. 143–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31672-3_8
Zobair, K.M., Sanzogni, L., Sandhu, K.: Telemedicine healthcare service adoption barriers in rural Bangladesh. Australas. J. Inf. Syst. 24 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Shah, S.A.B., Aziz, S.M. (2020). Response Time Determinism in Healthcare Data Analytics Using Machine Learning. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)