IoT Based Crop-Field Monitoring and Precise Irrigation System Using Crop Water Requirement | SpringerLink
Skip to main content

IoT Based Crop-Field Monitoring and Precise Irrigation System Using Crop Water Requirement

  • Conference paper
  • First Online:
Computational Intelligence in Data Science (ICCIDS 2020)

Abstract

Existing practices of crop irrigation is manual and based on generic traditional recommendations. Crops when provided lesser water, shows reduced growth and reduced uptake of calcium. Excessive irrigation leads to root death and water wastage. Hence, irrigating crops with precise water becomes an important problem. Towards this objective, an IoT based crop field monitoring and precise irrigation system is proposed that monitors crop-field and computes precise crop water requirement based on its life cycle and climatic conditions. Using this computed crop water requirement, a pump motor is operated automatically whenever soil moisture decreases below permanent welting point. The motor is shut down once the required water is pumped out to crops. The proposed system is installed in a crop-field of brindle plant and the crop is irrigated for 6 months. It is observed that 53% of water has been saved from wastage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nisha, G., Megala, J.: Wireless sensor network based automated irrigation and crop field monitoring system. In: Sixth International Conference on Advanced Computing (ICoAC), pp. 189–194 (2014)

    Google Scholar 

  2. Morais, R., Valente, A., Serdio, C.: A Wireless sensor network for smart irrigation and environmental monitoring: a position article. In: 5th European Federation for Information Technology in Agriculture, Food and Environment and 3rd World Congress on Computers in Agriculture and Natural Resources (EFITA/WCCA), pp. 845–850 (2005)

    Google Scholar 

  3. Tanveer, A., Choudhary, A., Pal, D., Gupta, R., Husain, F.: Automated farming using microcontroller and sensors. Int. J. Sci. Res. Manag. Stud. (IJSRMS) 2(1), 21–30 (2015)

    Google Scholar 

  4. Jiao, J., Ma, H.M., Qiao, Y., Du, Y.L., Kong, W., Wu, Z.C.: Design of Farm Environmental Monitoring System Based on the Internet of Things. Advance Journal of Food Science and Technology 6(3), 368–373 (2014)

    Article  Google Scholar 

  5. Pavithra, D.S., Srinath, M.S.: GSM based automatic irrigation control system for efficient use of resources and crop planning by using an android mobile. IOSR J. Mech. Civil Eng. (IOSR-JMCE) 11(4), 49–55 (2014)

    Google Scholar 

  6. Darshna, S., Sangavi, T., Mohan, S., Soundharya, A., Desikan, S.: Smart irrigation system. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 10(3), 32–36 (2015)

    Google Scholar 

  7. Naik, P., et al.: Arduino based automatic irrigation system using IoT. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. IJSRCSEIT 2(3), 881–886 (2017)

    Google Scholar 

  8. Ankit Kumar, V., Bhagavan, K., Akhil, V., Amrita, S.: Wireless network based smart irrigation system using IOT. Int. J. Eng. Technol. 7(1.1), 342–345 (2018)

    Google Scholar 

  9. Rao, R.N., Sridhar, B.: IoT based smart crop-field monitoring and automation irrigation system. In: Second International Conference on Inventive Systems and Control ICISC, pp. 478–483 (2018)

    Google Scholar 

  10. Banumathi, P., Saravanan, D., Sathiyapriya, M., Saranya, V.: An android based automatic irrigation system using bayesian network with SMS and voice alert. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. IJSRCSEIT 2(2), 573–578 (2017)

    Google Scholar 

  11. Bharathi, G., Prasunamba, C.G.: Automatic irrigation system for smart city using PLC AND SCADA. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. IJSRCSEIT 2(4), 309–314 (2017)

    Google Scholar 

  12. Kumar, B.D., Srivastava, P., Agrawal, R., Tiwari, V.: Microcontroller based automatic plant irrigation system. Int. Res. J. Eng. Technol. (IRJET) 4(5), 1436–1439 (2017)

    Google Scholar 

  13. Pooja, P., Pranali, D., Asmabi, S., Priyanka, N.: Future of the drip irrigation system: a proposed approach. Multidiscip. J. Res. Eng. Technol. 4(1), 1055–1060 (2017)

    Google Scholar 

  14. Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage. International Commission for Irrigation and Drainage 300(9), (1998)

    Google Scholar 

  15. Doorenbos, J., Pruitt, W.O.: FAO irrigation and drainage. In: Food and Agriculture Organization of the United Nations Rome (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchana Rajaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajaram, K., Sundareswaran, R. (2020). IoT Based Crop-Field Monitoring and Precise Irrigation System Using Crop Water Requirement. In: Chandrabose, A., Furbach, U., Ghosh, A., Kumar M., A. (eds) Computational Intelligence in Data Science. ICCIDS 2020. IFIP Advances in Information and Communication Technology, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-030-63467-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63467-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63466-7

  • Online ISBN: 978-3-030-63467-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics