Abstract
Correlation Power Analysis (CPA) is an efficient way to recover the secret key of the target device. CPA technique exploits the linear relationship between the power model and the real power consumption of an encryption device. In theory, we only need fewer power traces to recover secret key bytes successfully. However, due to the impact of noise, we need a larger number of power traces in order to extract the secret key. Therefore, the computation time becomes a serious problem for performing this attack. This paper introduces a new method to reduce the computation time for CPA method with the technique of finding points of interest which was used for template attack. The experimental results have clarified the efficiency of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related attacks (1998). http://www.cryptography.com
Messerges, T., Dabbish, E., Sloan, R.: Investigation of power analysis attacks on smartcards. In: Usenix Workshop on Smartcard Technology (1999). http://www.usenix.org
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_12
Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power analysis on smartcards. In: Koç, Çetin K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 78–92. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_6
Kim, Y., Sugawara, T., Homma, N., Aoki, T.: Akashi Satoh: Biasing power traces to improve correlation in power analysis attacks. In: First International Workshop on Constructive Side-Channel Analysis and Secure Design, Citeseer, pp. 77–80 (2010)
Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A proposition for correlation power analysis enhancement. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_14
Ouladj, M., Guillot, P., Mokrane, F.: Chosen message strategy to improve the correlation power analysis. IET Inf. Secur. 13(4), 304–310 (2019)
Quentin L. Meunier. FastCPA: Efficient Correlation Power Analysis Computation with a Large Number of Traces. In: 6th Cryptography and Security in Computing Systems (CS2 2019), https://doi.org/10.1145/3304080.3304082. hal-02172200 (2019)
Acknowledgment
This work is funded by Ministry of Science and Technology (MOST), Vietnam, under the grant number HNQT/TKCG/04.20.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Do, NT., Hoang, VP. (2020). An Efficient Side Channel Attack Technique with Improved Correlation Power Analysis. In: Vo, NS., Hoang, VP. (eds) Industrial Networks and Intelligent Systems. INISCOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-030-63083-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-63083-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63082-9
Online ISBN: 978-3-030-63083-6
eBook Packages: Computer ScienceComputer Science (R0)