Abstract
Random sample consensus (Ransac) is a technique that has been widely used for modeling data with a large amount of noise. Although successfully employed in areas such as computer vision, extensive testing and applications to clinical data, particularly in oncology, are still lacking. We applied this technique to synthetic and biomedical datasets, publicly available at The Cancer Genome Atlas (TCGA) and the UC Irvine Machine Learning Repository, to identify outliers in the classification of tumor samples. The results obtained by combining Ransac with logistic regression were compared against a baseline classical logistic model. To evaluate the robustness of this method, the original datasets were then perturbed by generating noisy data and by artificially switching the labels. The flagged outlier observations were compared against the misclassifications of the baseline logistic model, along with the evaluation of the overall accuracy of both strategies. Ransac has shown high precision in classifying a subset of core (inlier) observations in the datasets evaluated, while simultaneously identifying the outlier observations, as well as robustness to increasingly perturbed data.
A. Veríssimo and M. B. Lopes—joint first author.
Supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) through projects UIDB/50021/2020 (INESC-ID), UIDB/50022/2020 (LAETA, IDMEC), UID/EEA/50008/2019, SFRH/BD/97415/2013, PREDICT (PTDC/CCI-CIF/29877/2017), MATISSE (DSAIPA/DS/0026/2019) and BINDER (PTDC/CCI-INF/29168/2017).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Zhou, F., Cui, Y., Wang, Y., Liu, L., Gao, H.: Accurate and robust estimation of camera parameters using RANSAC. Opt. Lasers Eng. 51(3), 197–212 (2013)
Nurunnabi, A., West, G., Belton, D.: Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recognit. 48, 1404–1419 (2015)
Stewart, C.: Robust parameter estimation in computer vision. SIAM Rev. 41(3), 513–537 (1999)
Teoh, S.T., Kitamura, M., Nakayama, Y., Putri, S., Mukai, Y., Fukusaki, E.: Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement. J. Biosci. Bioeng. 122(2), 168–175 (2016)
Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M.: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11(1), 395 (2010)
Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Society. Ser. A (Gen.) 135(3), 370–384 (1972)
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)
Veríssimo, A., Oliveira, A.L., Sagot, M.-F., Vinga, S.: DegreeCox - a network-based regularization method for survival analysis. BMC Bioinform. 17, 109–121 (2016)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Society. Ser. B (Methodol.) 58(1), 267–288 (1996)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Veríssimo, A., Lopes, M.B., Carrasquinha, E., Vinga, S. (2020). Random Sample Consensus for the Robust Identification of Outliers in Cancer Data. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science(), vol 12313. Springer, Cham. https://doi.org/10.1007/978-3-030-63061-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-63061-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63060-7
Online ISBN: 978-3-030-63061-4
eBook Packages: Computer ScienceComputer Science (R0)