Topic Diffusion Prediction on Bibliographic Network: New Approach with Combination Between External and Intrinsic Factors | SpringerLink
Skip to main content

Topic Diffusion Prediction on Bibliographic Network: New Approach with Combination Between External and Intrinsic Factors

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12496))

Included in the following conference series:

  • 1410 Accesses

Abstract

In this research, we propose a novel approach for the topic’s propagation prediction on a bibliographic network with a combination of external factors and intrinsic factors. We utilize a supervised method to predict the propagation of a specific topic where combining dissimilar features with the dissimilar measuring coefficient. Firstly, we propose a new method to calculate activation probability from an active node to an inactive node based on both meta-path and textual information. This activation probability is considered as an external factor. Moreover, we exploit the author’s interest in the topic, which is propagated as an intrinsic factor. Finally, we amalgamate the activation probability feature and the author’s preference feature in the topic’s spreading prediction. We conducted experiments on dissimilar topics of the bibliographic network dataset and have attained satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akula, R., Yousefi, N., Garibay, I.: DeepFork: Supervised Prediction of Information Diffusion in GitHub, p. 12 (2019)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 601–608. MIT Press, Cambridge (2002). http://papers.nips.cc/paper/2070-latent-dirichlet-allocation.pdf

  3. Bui, Q.V., Sayadi, K., Amor, S.B., Bui, M.: Combining latent dirichlet allocation and k-means for documents clustering: effect of probabilistic based distance measures. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 248–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_24

    Chapter  Google Scholar 

  4. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001). https://doi.org/10.1023/A:1011122126881

  5. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978). https://www.journals.uchicago.edu/doi/abs/10.1086/226707

  6. Gui, H., Sun, Y., Han, J., Brova, G.: Modeling topic diffusion in multi-relational bibliographic information networks. In: CIKM (2014)

    Google Scholar 

  7. Ho, T.K.T., Bui, Q.V., Bui, M.: Homophily independent cascade diffusion model based on textual information. In: Nguyen, N.T., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) ICCCI 2018. LNCS (LNAI), vol. 11055, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98443-8_13

    Chapter  Google Scholar 

  8. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91

    Chapter  Google Scholar 

  9. Kempe, D., Kleinberg, J.M., Tardos, V.: Maximizing the spread of influence through a social network. In: KDD (2003)

    Google Scholar 

  10. Macy, M.W.: Chains of cooperation: threshold effects in collective action. Am. Sociol. Rev. 56(6), 730–747 (1991). https://www.jstor.org/stable/2096252

  11. Molaei, S., Babaei, S., Salehi, M., Jalili, M.: Information spread and topic diffusion in heterogeneous information networks. Sci. Rep. 8(1), 1–14 (2018). https://www.nature.com/articles/s41598-018-27385-2

  12. Molaei, S., Zare, H., Veisi, H.: Deep learning approach on information diffusion in heterogeneous networks. Knowl.-Based Syst., p. 105153 (2019). http://www.sciencedirect.com/science/article/pii/S0950705119305076

  13. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The Author-Topic Model for Authors and Documents. arXiv:1207.4169 [cs, stat] (2012)

  14. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988). http://www.sciencedirect.com/science/article/pii/0306457388900210

  15. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. In: VLDB 11 (2011)

    Google Scholar 

  16. Varshney, D., Kumar, S., Gupta, V.: Modeling information diffusion in social networks using latent topic information. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2014. LNCS, vol. 8588, pp. 137–148. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09333-8_16

    Chapter  Google Scholar 

  17. Yang, H.: Mining social networks using heat diffusion processes for marketing candidates selection. ACM (2008). https://aran.library.nuigalway.ie/handle/10379/4164

Download references

Acknowledgement

This study is funded by Research Project No. DHH2020-01-164 of Hue University, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Kim Thoa Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, Q.V., Ho, T.K.T., Bui, M. (2020). Topic Diffusion Prediction on Bibliographic Network: New Approach with Combination Between External and Intrinsic Factors. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63007-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63006-5

  • Online ISBN: 978-3-030-63007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics