A Lean Quality Control Approach for Additive Manufacturing | SpringerLink
Skip to main content

A Lean Quality Control Approach for Additive Manufacturing

  • Conference paper
  • First Online:
Product Lifecycle Management Enabling Smart X (PLM 2020)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 594))

Included in the following conference series:

Abstract

Additive Manufacturing is becoming more and more popular not just in the manufacturing industry, but also in the consumer market, because it offers a new world of opportunities, starting from the absence of constraints in geometry and the reduction in wastes due to material removal typical of subtractive manufacturing. Moreover, it is able to enhance lean manufacturing objectives of reducing activities that do not add any value for customers. However, a wide application is threatened by the lack of consistent quality. Therefore, it is necessary to further study defects that affect 3D printed products and to propose new manners to control them. This paper proposes to use a low cost, light weight, portable, device as a scanner to rapidly acquire data from 3D printed products and compare it with the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Standards Organisation (ISO), Additive manufacturing. General principles, pp. 1–14 (2015)

    Google Scholar 

  2. Strategic Report: Additive & Technology Demonstration EDA AM State of the Art & Strategic Report. Additive Manufacturing Feasibility Study and Technology Demonstration, pp. 1–187 (2018)

    Google Scholar 

  3. Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8(3), 215–243 (2013)

    Article  Google Scholar 

  4. Rayna, T., Striukova, L.: From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol. Forecast. Soc. Change 102, 214–224 (2016)

    Article  Google Scholar 

  5. Górski, F., Kuczko, W., Wichniarek, R.: Influence of process parameters on dimensional accuracy of parts manufactured using Fused Deposition Modelling technology. Adv. Sci. Technol. Res. J. 7(19), 27–35 (2013)

    Article  Google Scholar 

  6. Masood, S.H.: Advances in fused deposition modeling. In: Comprehensive Materials Processing, vol. 10, pp. 69–91. Elsevier Ltd. (2014). https://doi.org/10.1016/B978-0-08-096532-1.01002-5

  7. Krafcik, J.F.: Triumph of the lean production system. MIT Sloan Manage. Revi. 30(1), 41 (1988)

    Google Scholar 

  8. Shah, R., Ward, P.T.: Defining and developing measures of lean production. J. Oper. Manage. 25(4), 785–805 (2007)

    Article  Google Scholar 

  9. Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J.A., O’Regan, N.: Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. Int. J. Prod. Econ. 219, 457–468 (2018)

    Article  Google Scholar 

  10. Malekipour, E., El-Mounayri, H.: Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review. Int. J. Adv. Manuf. Technol. 95(1), 527–550 (2017). https://doi.org/10.1007/s00170-017-1172-6

    Article  Google Scholar 

  11. Lezama-Nicolás, R., Rodríguez-Salvador, M., Río-Belver, R., Bildosola, I.: A bibliometric method for assessing technological maturity: the case of additive manufacturing. Scientometrics 117(3), 1425–1452 (2018). https://doi.org/10.1007/s11192-018-2941-1

    Article  Google Scholar 

  12. Crosby, P.B.: Quality is Free: The Art of Making Quality Certain, vol. 94. McGraw-Hill, New York (1979)

    Google Scholar 

  13. Huang, Q., Zhang, J., Sabbaghi, A., Dasgupta, T.: Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Trans. 47(5), 431–441 (2015)

    Article  Google Scholar 

  14. Schmutzler, C., Stiehl, T.H., Zaeh, M.F.: Empirical process model for shrinkage-induced warpage in 3D printing. Rapid Prototyping J. 25, 721–727 (2019)

    Article  Google Scholar 

  15. Leary, M.: Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces. In: Laser Additive Manufacturing, pp. 99–118. Woodhead Publishing (2017)

    Google Scholar 

  16. Slotwinski, J.A., Garboczi, E.J.: Porosity of additive manufacturing parts for process monitoring. In: AIP Conference Proceedings, vol. 1581, no. 1, pp. 1197–1204. American Institute of Physics (February 2014)

    Google Scholar 

  17. Boschetto, A., Bottini, L.: Accuracy prediction in fused deposition modeling. Int. J. Adv. Manuf. Technol. 73(5-8), 913–928 (2014). https://doi.org/10.1007/s00170-014-5886-4

    Article  Google Scholar 

  18. Colosimo, B.M., Huang, Q., Dasgupta, T., Tsung, F.: Opportunities and challenges of quality engineering for additive manufacturing. J. Qual. Technol. 50(3), 233–252 (2018)

    Article  Google Scholar 

  19. Rao, P.K., Liu, J.P., Roberson, D., Kong, Z.J., Williams, C.: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng. 137(6), 061007 (2015)

    Article  Google Scholar 

  20. Shirke, A., Choudhari, C., Rukhande, S.: Parametric optimization of fused deposition modelling (FDM) process using PSO algorithm. In: International Conference on Advances in Thermal Systems, Materials and Design Engineering, ATSMDE 2017 (2017)

    Google Scholar 

  21. Mokhtarian, H., Hamedi, A., Nagarajan, H., Panicker, S., Coatanéa, E., Haapala, K.: Probabilistic modelling of defects in additive manufacturing: a case study in powder bed fusion technology. Procedia CIRP 81, 956–961 (2019)

    Article  Google Scholar 

  22. Lin, W., Shen, H., Fu, J., Wu, S.: Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology. Precis. Eng. 60, 76–84 (2019)

    Article  Google Scholar 

  23. Garza, J.M.: Understanding the adoption of additive manufacturing (Doctoral dissertation, Massachusetts Institute of Technology) (2016)

    Google Scholar 

  24. D’Antonio, G., Segonds, F., Laverne, F., Sauza-Bedolla, J., Chiabert, P.: A framework for manufacturing execution system deployment in an advanced additive manufacturing process. Int. J. Prod. Lifecycle Manage. Indersci. 10(1), 1–19 (2017). hal-01650891. https://doi.org/10.1504/IJPLM.2017.082996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sini, F., Bruno, G., Chiabert, P., Segonds, F. (2020). A Lean Quality Control Approach for Additive Manufacturing. In: Nyffenegger, F., Ríos, J., Rivest, L., Bouras, A. (eds) Product Lifecycle Management Enabling Smart X. PLM 2020. IFIP Advances in Information and Communication Technology, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-030-62807-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62807-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62806-2

  • Online ISBN: 978-3-030-62807-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics