Abstract
Many of the tasks that a service robot can perform at home involve navigation skills. In a real world scenario, the navigation system should consider individuals beyond just objects, theses days it is necessary to offer particular and dynamic representation in the scenario in order to enhance the HRI experience. In this paper, we use the proxemic theory to do this representation. The proxemic zones are not static. The culture or the context influences them and, if we have this influence into account, we can increase humans’ comfort. Moreover, there are collaborative tasks in which these zones take different shapes to allow the task’s best performance. This research develops a layer, the social layer, to represent and distribute the proxemics zones’ information in a standard way, through a cost map and using it to perform a social navigate task. We have evaluated these components in a simulated scenario, performing different collaborative and human-robot interaction tasks and reducing the personal area invasion in a 32%. The material developed during this research can be found in a public repository (https://github.com/IntelligentRoboticsLabs/social_navigation2_WAF), as well as instructions to facilitate the reproducibility of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bera, A., Randhavane, T., Prinja, R., Manocha, D.: Sociosense: robot navigation amongst pedestrians with social and psychological constraints. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7018–7025 (2017). https://doi.org/10.1109/IROS.2017.8206628
Billy Okal, T.L.: pedsim\_ros (2016). https://github.com/jginesclavero/pedsim_ros/tree/eloquent-dev
Breazeal, C.L.: Designing Sociable Robots. MIT Press, Cambridge (2004)
Butler, J.T., Agah, A.: Psychological effects of behavior patterns of a mobile personal robot. Auton. Robots 10(2), 185–202 (2001). https://doi.org/10.1023/A:1008986004181
Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-chaining partial-order planning. In: Twentieth International Conference on Automated Planning and Scheduling (2010)
Foote, T.: TF: the transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Open-Source Software workshop, pp. 1–6 (2013). https://doi.org/10.1109/TePRA.2013.6556373
Fox, M., Long, D.: PDDL2. 1: An extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)
Galvan, M., Repiso, E., Sanfeliu, A.: Robot navigation to approach people using G2-spline path planning and extended social force model. In: Advances in Intelligent Systems and Computing. AISC, vol. 1093, pp. 15–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36150-1_2
Ginés, J., Martín, F., Vargas, D., Rodríguez, F.J., Matellán, V.: Social navigation in a cognitive architecture using dynamic proxemic zones. Sensors 19(23) (2019). https://doi.org/10.3390/s19235189
Gloor, C.: Pedsim: pedestrian crowd simulation, vol. 5, no. 1 (2016). http://pedsim.silmaril.org
Hall, E.T.: The Hidden Dimension, vol. 609. Doubleday, Garden City (1910)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/physreve.51.4282
Kirby, R.: Social robot navigation. ProQuest Dissertations and Theses, no. 3470165, p. 232 (2010)
Kirby, R., Simmons, R., Forlizzi, J.: Companion: a constraint-optimizing method for person-acceptable navigation. In: RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 607–612 (2009). https://doi.org/10.1109/ROMAN.2009.5326271
Koay, K.L., Syrdal, D., Bormann, R., Saunders, J., Walters, M.L., Dautenhahn, K.: Initial design, implementation and technical evaluation of a context-aware proxemics planner for a social robot. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol. 10652, pp. 12–22. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70022-9_2
Kostavelis, I., Kargakos, A., Giakoumis, D., Tzovaras, D.: Robot’s workspace enhancement with dynamic human presence for socially-aware navigation. In: Liu, M., Chen, H., Vincze, M. (eds.) Computer Vision Systems, pp. 279–288. Springer, Cham (2017)
Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Elsevier. https://www.sciencedirect.com/science/article/pii/S0921889013001048
Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726 – 1743 (2013). https://doi.org/10.1016/j.robot.2013.05.007. http://www.sciencedirect.com/science/article/pii/S0921889013001048
Lu, D.V., Hershberger, D., Smart, W.D.: Layered cost maps for context-sensitive navigation. In: IEEE International Conference on Intelligent Robots and Systems, pp. 709–715. Institute of Electrical and Electronics Engineers Inc. (2014). https://doi.org/10.1109/IROS.2014.6942636
Lu, D.V., Smart, W.D.: Towards more efficient navigation for robots and humans. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1707–1713 (2013). https://doi.org/10.1109/IROS.2013.6696579
Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: robust navigation in an indoor office environment. In: 2010 IEEE International Conference on Robotics and Automation, pp. 300–307 (2010). https://doi.org/10.1109/ROBOT.2010.5509725
Mead, R., Mataric, M.J.: Robots have needs too: people adapt their proxemic preferences to improve autonomous robot recognition of human social signals. In: AISB Convention 2015 (2015)
Okal, B., Arras, K.O.: Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2889–2895. IEEE (2016)
Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Evaluation of passing distance for social robots. In: ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 315–320 (2006). https://doi.org/10.1109/ROMAN.2006.314436
Repiso, E., Garrell, A., Sanfeliu, A.: Adaptive side-by-side social robot navigation to approach and interact with people. Int. J. Soc. Robot. 1–22 (2019). https://doi.org/10.1007/s12369-019-00559-2
Rico, F.M.: ros2\(\_\)planning\(\_\)system (2019). https://github.com/IntelligentRoboticsLabs/ros2_planning_system
Vega, A., Manso, L.J., Macharet, D.G., Bustos, P., Núñez, P.: Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances. Pattern Recogn. Lett. 118, 72–84 (2019). https://doi.org/10.1016/j.patrec.2018.07.015
Vega-Magro, A., Manso, L.J., Bustos, P., Núñez, P.: A flexible and adaptive spatial density model for context-aware social mapping: towards a more realistic social navigation. In: Proceedings of 15th International Conference on Control, Automation, Robotics and Vision, pp. 1727–1732 (2018)
Walters, M.L., Dautenhahn, K., Te Boekhorst, R., Koay, K.L., Syrdal, D.S., Nehaniv, C.L.: An empirical framework for Human-Robot proxemics. In: Adaptive and Emergent Behaviour and Complex Systems - Proceedings of the 23rd Convention of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, AISB 2009, pp. 144–149 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ginés Clavero, J., Martín Rico, F., Rodríguez-Lera, F.J., Guerrero Hernández, J.M., Matellán Olivera, V. (2021). Defining Adaptive Proxemic Zones for Activity-Aware Navigation. In: Bergasa, L.M., Ocaña, M., Barea, R., López-Guillén, E., Revenga, P. (eds) Advances in Physical Agents II. WAF 2020. Advances in Intelligent Systems and Computing, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-62579-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-62579-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62578-8
Online ISBN: 978-3-030-62579-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)