Abstract
The fourth Industrial Revolution sets higher standards for the manufacturing itself and all associated processes. A promising direction in this context is the concept of Zero-Defect Manufacturing (ZDM) aiming at further automatization and optimisation of the production processes to reduce resources and avoid useless elements in the production chains. Moreover, the modern industrial systems are highly complex and require collaboration with other systems for the products’ manufacturing and maintenance. This fact leads to the necessity for the better approaches for design, development, evaluation and assessment of manufacturing systems. The goal of this article is to assess some key European research projects on industrial manufacturing to re-use their achievements for design of the ZDM systems. Another goal is to identify the basis for an umbrella platform able to integrate the functionalities of other manufacturing platforms. Thus, interoperability and collaboration issues are also in the scope of this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dombrowski, U., Wagner, T.: Mental strain as field of action in the 4th industrial revolution. Procedia CIRP 17, 100–105 (2014). https://doi.org/10.1016/j.procir.2014.01.077
Camarinha-Matos, L.M., Fornasiero, R., Ramezani, J., Ferrada, F.: Collaborative networks: a pillar of digital transformation. Appl. Sci. 9(24), 5431 (2019). https://doi.org/10.3390/app9245431
Zhou, K., Liu, T. Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (2015). https://doi.org/10.1109/fskd.2015.7382284
Bigliardi, B., Bottani, E., Casella, G.: Enabling technologies, application areas and impact of industry 4.0: a bibliographic analysis Procedia Manuf. 42, 322–326 (2020)
Nazarenko, A.A., Camarinha-Matos, L.M.: Basis for an approach to design collaborative cyber-physical systems. In: Camarinha-Matos, L.M., Almeida, R., Oliveira, J. (eds.) DoCEIS 2019. IAICT, vol. 553, pp. 193–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17771-3_16
Ribeiro, L., Bjorkman, M.: Transitioning from standard automation solutions to cyber-physical production systems: an assessment of critical conceptual and technical challenges. IEEE Syst. J., 1–13 (2017). https://doi.org/10.1109/jsyst.2017.2771139
Nazarenko, A., Camarinha-Matos, L.M.: Towards collaborative cyber-physical systems. In: 2017 International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE), Costa da Caparica, Portugal, pp. 12–17. IEEE Xplore (2017). https://doi.org/10.1109/yef-ece.2017.7935633
Lindström, J., et al.: Towards intelligent and sustainable production systems with a zero-defect manufacturing approach in an Industry 4.0 context. Procedia CIRP 81, 880–885 (2019)
Eger, F., Tempel, P., Magnanini, M.C., Reiff, C., Colledani, M., Verl, A.: Part variation modeling in multi-stage production systems for zero-defect manufacturing. In: 2019 IEEE International Conference on Industrial Technology (ICIT) (2019). https://doi.org/10.1109/icit.2019.8754964
Steringer, R., Zörrer, H., Zambal, S., Eitzinger, C.: Using discrete event simulation in multiple system life cycles to support zero-defect composite manufacturing in aerospace industry. IFAC-PapersOnLine 52(13), 1467–1472 (2019)
Graça, P., Camarinha-Matos, L.M.: Performance indicators for collaborative business ecosystems – literature review and trends. Technol. Forecast. Soc. Change 116, 237–255 (2017). https://doi.org/10.1016/j.techfore.2016.10.012
International Data Spaces Association. Reference Architecture Model https://www.fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/IDS-Reference-Architecture-Model.pdf. Accessed 18 Apr 2020
Fraile, F., Sanchis, R., Poler, R., Ortiz, A.: Reference models for digital manufacturing platforms. Appl. Sci. 9, 4433 (2019)
Bader, S.R., Maleshkova, M., Lohmann, S.: Structuring reference architectures for the industrial internet of things. Fut. Internet 11, 151 (2019)
Wei, S., Hu, J., Cheng, Y., Ma, Y., Yu, Y.: The essential elements of intelligent Manufacturing System Architecture. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, pp. 1006–1011 (2017)
Camarinha-Matos, L.M., Afsarmanesh, H., Ermilova, E., Ferrada, F., Klen, A., Jarimo, T.: Arcon reference models for collaborative networks. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) Collaborative Networks: Reference Modeling, pp. 83–112. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-79426-6_8
Sino-German Industrie 4.0/Intelligent Manufacturing Standardisation Sub-Working Group. Alignment Report for Reference Architectural Model for Industrie 4.0/Intelligent Manufacturing System Architecture (2018). https://sci40.com/files/assets_sci40.com/img/sci40/Alignment%20Report%20RAMI.pdf. Accessed 17 Apr 2020
Industrial Internet Consortium and Plattform Industrie 4.0. Architecture Alignment and Interoperability. Joint Whitepaper (2017). https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf. Accessed 10 Apr 2020
Industrial Internet Consortium. Industrial Internet Reference Architecture (2014). https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Accessed 10 Apr 2020
Li, Q., et al.: Smart manufacturing standardization: architectures, reference models and standards framework. Comput. Ind. 101, 91–106 (2018). https://doi.org/10.1016/j.compind.2018.06.005
DIN/DKE. GERMAN STANDARDIZATION ROADMAP. Industry 4.0 Version 2 (2016) https://sci40.com/files/assets_sci40.com/pdf/german-standardization-roadmap-industry-4-0-version-2-data.pdf. Accessed 09 Apr 2020
Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations - concepts and practice in manufacturing enterprises. J. Comput. Ind. Eng. 57(2009), 46–60 (2009). https://doi.org/10.1016/j.cie.2008.11.024
D2.2 – BEinCPPS Architecture & Business Processes. https://6d5a66e7-aea5-4aab-9548-6ced0d99e05c.filesusr.com/ugd/03d390_b6a39ea817ca4c2d97b3ba9171868041.pdf. Accessed 12 Apr 2020
Nazarenko, A.A., Giao, J., Sarraipa, J., Saiz, O.J., Perales, O.G., Jardim-Gonçalves, R.: Data Management component for virtual factories systems. In: Zelm, M., Jaekel, F.-W., Doumeingts, G., Wollschlaeger, M. (eds.) Enterprise Interoperability: Smart Services and Business Impact of Enterprise Interoperability, pp. 99–106. ISTE Ltd., London, UK (2018)
Giao, J., Sarraipa, J., Jardim-Gonçalves, R.: Open modular components in the industry using vf-OS components. In: Camarinha-Matos, Luis M., Almeida, R., Oliveira, J. (eds.) DoCEIS 2019. IAICT, vol. 553, pp. 238–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17771-3_20
vf-OS D2.1: Global Architecture Definition – Vs: 1.2.2 (2017). https://ef136c81-3047-408f-b1ec-2955e8231f38.filesusr.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.pdf. Accessed 11 Apr 2020
Stubbs, J., Moreira, W., Dooley, R.: Distributed systems of microservices using Docker and Serfnode. In: 2015 7th International Workshop on Science Gateways (2015). https://doi.org/10.1109/iwsg.2015.16
Corista, P., Giao, J., Sarraipa, J., Garcia Perales, O., Almeida, R., Moalla, N.: Enablers Framework: Developing Applications Using FIWARE. Enterp. Interoperab. 83–89 (2018). https://doi.org/10.1002/9781119564034.ch10
ZDMP D2.4: Manufacturing Reference Model Analysis Document (2019). https://c53c19bc-6460-4dea-a74f-97b851e7af75.filesusr.com/ugd/851c99_57042ac5fb6a4adea44bf9ff81010f5e.pdf. Accessed 02 Aug 2020
Givehchi, O., Landsdorf, K., Simoens, P., Colombo, A.W.: Interoperability for industrial cyber-physical systems: an approach for legacy systems. IEEE Trans. Ind. Inf. 13(6), 3370–3378 (2017). https://doi.org/10.1109/tii.2017.2740434
BEinCPPS D2.4 – IoT Platform Federation (2017). https://6d5a66e7-aea5-4aab-9548-6ced0d99e05c.filesusr.com/ugd/03d390_6264ca6f678642edb48b62cf697fa903.pdf. Accessed 15 Apr 2020
CREMA D3.3 Technical Specification. (2015). https://www.crema-project.eu/media/1082/t33-d33-technical-specification-v100.pdf. Accessed 15 Apr 2020
CREMA D3.2: Functional Specification (2015). https://www.crema-project.eu/media/1086/t32-d32-functional-specification-v100.pdf. Accessed 15 Apr 2020
MANTIS D2.9 Reference architecture and design specification (2018). http://www.mantis-project.eu/wp-content/uploads/2018/07/D2.9_Reference_Architecture_and_Design_Specification_Final_.pdf. Accessed 14 Apr 2020
MANTIS D2.10 Interface, Protocol and Functional Interoperability Guidance and Specification (2018). http://www.mantis-project.eu/wp-content/uploads/2015/10/D2.10_Interface_protocol_and_functional_interoperability_guidance_and_specification_v1.1.pdf. Accessed 14 Apr 2020
vf-OS D1.2: User Scenarios Characterisation – Vs:1.11 (2018). https://ef136c81-3047-408f-b1ec-2955e8231f38.filesusr.com/ugd/0cf731_f0083b20243747619993661dfe6c7d22.pdf. Accessed 15 Apr 2020
RestAssured Deliverable D9.6 Final RestAssured Handbook. Release 1.0 (2019). https://restassuredh2020.eu/wp-content/uploads/2019/12/D9.6.pdf. Accessed 14 Apr 2020
RestAssured Deliverable D3.3 Final High-Level Architecture & Methodology. Release 1.0 (2019). https://restassuredh2020.eu/wp-content/uploads/2019/12/D3.3.pdf. Accessed 14 Apr 2020
DISRUPT Deliverable D2.3 The DISRUPT Platform Integration Plan (2019). http://www.disrupt-project.eu/Files/Deliverables/D2.3-The%20DISRUPT%20Platform%20Integration%20Plan.pdf. Accessed 12 Apr 2020
DISRUPT Deliverable 4.2. Data Analytics Toolkit (2019). http://www.disrupt-project.eu/Files/Deliverables/D4.2-Data_Analytics_Toolkit.pdf. Accessed 12 Apr 2020
DIGICOR D6.2: Knowledge Protection Specification (2018). https://6c97d07e-2d66-4f14-9c19-8c5872c4c3ba.filesusr.com/ugd/2512a7_6256f94aca924310a507df5b8ed7bd8d.pdf. Accessed 15 Apr 2020
DIGICOR D 5.8: Data access API & Reference data store (2019). https://6c97d07e-2d66-4f14-9c19-8c5872c4c3ba.filesusr.com/ugd/2512a7_a332d527b55e46a3935463fdd722453f.pdf. Accessed 15 Apr 2020
I-BiDaaS D6.2: Experiments implementation – initial version (2019). http://www.ibidaas.eu/sites/default/files/docs/ibidaas-d6.2.pdf. Accessed 12 Apr 2020
I-BiDaaS Deliverable D1.3: Positioning of I-BiDaaS (2018) http://www.ibidaas.eu/sites/default/files/docs/Ibidaas-d1.3.pdf. Accessed 12 Apr 2020
GO0DMAN Deliverable 2.1. Multi-Agent Architecture Specification (2017). http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-2.1.pdf. Accessed 16 Apr 2020
GO0DMAN Deliverable 1.2 ZDM Management Methodology (2017). http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-1.2.pdf. Accessed 16 Apr 2020
Acknowledgments
This work was supported in part by the European Union H2020 Program under grant agreement No. 825631 “Zero Defect Manufacturing Platform (ZDMP)”, and by the Portuguese FCT foundation through the program UIDB/00066/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Nazarenko, A.A., Sarraipa, J., Camarinha-Matos, L.M., Dorchain, M., Jardim-Goncalves, R. (2020). Analysis of Manufacturing Platforms in the Context of Zero-Defect Process Establishment. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds) Boosting Collaborative Networks 4.0. PRO-VE 2020. IFIP Advances in Information and Communication Technology, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-62412-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-62412-5_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62411-8
Online ISBN: 978-3-030-62412-5
eBook Packages: Computer ScienceComputer Science (R0)