Analysis of Manufacturing Platforms in the Context of Zero-Defect Process Establishment | SpringerLink
Skip to main content

Analysis of Manufacturing Platforms in the Context of Zero-Defect Process Establishment

  • Conference paper
  • First Online:
Boosting Collaborative Networks 4.0 (PRO-VE 2020)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 598))

Included in the following conference series:

  • 1779 Accesses

Abstract

The fourth Industrial Revolution sets higher standards for the manufacturing itself and all associated processes. A promising direction in this context is the concept of Zero-Defect Manufacturing (ZDM) aiming at further automatization and optimisation of the production processes to reduce resources and avoid useless elements in the production chains. Moreover, the modern industrial systems are highly complex and require collaboration with other systems for the products’ manufacturing and maintenance. This fact leads to the necessity for the better approaches for design, development, evaluation and assessment of manufacturing systems. The goal of this article is to assess some key European research projects on industrial manufacturing to re-use their achievements for design of the ZDM systems. Another goal is to identify the basis for an umbrella platform able to integrate the functionalities of other manufacturing platforms. Thus, interoperability and collaboration issues are also in the scope of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dombrowski, U., Wagner, T.: Mental strain as field of action in the 4th industrial revolution. Procedia CIRP 17, 100–105 (2014). https://doi.org/10.1016/j.procir.2014.01.077

    Article  Google Scholar 

  2. Camarinha-Matos, L.M., Fornasiero, R., Ramezani, J., Ferrada, F.: Collaborative networks: a pillar of digital transformation. Appl. Sci. 9(24), 5431 (2019). https://doi.org/10.3390/app9245431

  3. Zhou, K., Liu, T. Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (2015). https://doi.org/10.1109/fskd.2015.7382284

  4. Bigliardi, B., Bottani, E., Casella, G.: Enabling technologies, application areas and impact of industry 4.0: a bibliographic analysis Procedia Manuf. 42, 322–326 (2020)

    Google Scholar 

  5. Nazarenko, A.A., Camarinha-Matos, L.M.: Basis for an approach to design collaborative cyber-physical systems. In: Camarinha-Matos, L.M., Almeida, R., Oliveira, J. (eds.) DoCEIS 2019. IAICT, vol. 553, pp. 193–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17771-3_16

    Chapter  Google Scholar 

  6. Ribeiro, L., Bjorkman, M.: Transitioning from standard automation solutions to cyber-physical production systems: an assessment of critical conceptual and technical challenges. IEEE Syst. J., 1–13 (2017). https://doi.org/10.1109/jsyst.2017.2771139

  7. Nazarenko, A., Camarinha-Matos, L.M.: Towards collaborative cyber-physical systems. In: 2017 International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE), Costa da Caparica, Portugal, pp. 12–17. IEEE Xplore (2017). https://doi.org/10.1109/yef-ece.2017.7935633

  8. Lindström, J., et al.: Towards intelligent and sustainable production systems with a zero-defect manufacturing approach in an Industry 4.0 context. Procedia CIRP 81, 880–885 (2019)

    Article  Google Scholar 

  9. Eger, F., Tempel, P., Magnanini, M.C., Reiff, C., Colledani, M., Verl, A.: Part variation modeling in multi-stage production systems for zero-defect manufacturing. In: 2019 IEEE International Conference on Industrial Technology (ICIT) (2019). https://doi.org/10.1109/icit.2019.8754964

  10. Steringer, R., Zörrer, H., Zambal, S., Eitzinger, C.: Using discrete event simulation in multiple system life cycles to support zero-defect composite manufacturing in aerospace industry. IFAC-PapersOnLine 52(13), 1467–1472 (2019)

    Article  Google Scholar 

  11. Graça, P., Camarinha-Matos, L.M.: Performance indicators for collaborative business ecosystems – literature review and trends. Technol. Forecast. Soc. Change 116, 237–255 (2017). https://doi.org/10.1016/j.techfore.2016.10.012

  12. International Data Spaces Association. Reference Architecture Model https://www.fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/IDS-Reference-Architecture-Model.pdf. Accessed 18 Apr 2020

  13. Fraile, F., Sanchis, R., Poler, R., Ortiz, A.: Reference models for digital manufacturing platforms. Appl. Sci. 9, 4433 (2019)

    Article  Google Scholar 

  14. Bader, S.R., Maleshkova, M., Lohmann, S.: Structuring reference architectures for the industrial internet of things. Fut. Internet 11, 151 (2019)

    Article  Google Scholar 

  15. Wei, S., Hu, J., Cheng, Y., Ma, Y., Yu, Y.: The essential elements of intelligent Manufacturing System Architecture. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, pp. 1006–1011 (2017)

    Google Scholar 

  16. Camarinha-Matos, L.M., Afsarmanesh, H., Ermilova, E., Ferrada, F., Klen, A., Jarimo, T.: Arcon reference models for collaborative networks. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) Collaborative Networks: Reference Modeling, pp. 83–112. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-79426-6_8

    Chapter  Google Scholar 

  17. Sino-German Industrie 4.0/Intelligent Manufacturing Standardisation Sub-Working Group. Alignment Report for Reference Architectural Model for Industrie 4.0/Intelligent Manufacturing System Architecture (2018). https://sci40.com/files/assets_sci40.com/img/sci40/Alignment%20Report%20RAMI.pdf. Accessed 17 Apr 2020

  18. Industrial Internet Consortium and Plattform Industrie 4.0. Architecture Alignment and Interoperability. Joint Whitepaper (2017). https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf. Accessed 10 Apr 2020

  19. Industrial Internet Consortium. Industrial Internet Reference Architecture (2014). https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Accessed 10 Apr 2020

  20. Li, Q., et al.: Smart manufacturing standardization: architectures, reference models and standards framework. Comput. Ind. 101, 91–106 (2018). https://doi.org/10.1016/j.compind.2018.06.005

    Article  Google Scholar 

  21. DIN/DKE. GERMAN STANDARDIZATION ROADMAP. Industry 4.0 Version 2 (2016) https://sci40.com/files/assets_sci40.com/pdf/german-standardization-roadmap-industry-4-0-version-2-data.pdf. Accessed 09 Apr 2020

  22. Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations - concepts and practice in manufacturing enterprises. J. Comput. Ind. Eng. 57(2009), 46–60 (2009). https://doi.org/10.1016/j.cie.2008.11.024

    Article  Google Scholar 

  23. D2.2 – BEinCPPS Architecture & Business Processes. https://6d5a66e7-aea5-4aab-9548-6ced0d99e05c.filesusr.com/ugd/03d390_b6a39ea817ca4c2d97b3ba9171868041.pdf. Accessed 12 Apr 2020

  24. Nazarenko, A.A., Giao, J., Sarraipa, J., Saiz, O.J., Perales, O.G., Jardim-Gonçalves, R.: Data Management component for virtual factories systems. In: Zelm, M., Jaekel, F.-W., Doumeingts, G., Wollschlaeger, M. (eds.) Enterprise Interoperability: Smart Services and Business Impact of Enterprise Interoperability, pp. 99–106. ISTE Ltd., London, UK (2018)

    Chapter  Google Scholar 

  25. Giao, J., Sarraipa, J., Jardim-Gonçalves, R.: Open modular components in the industry using vf-OS components. In: Camarinha-Matos, Luis M., Almeida, R., Oliveira, J. (eds.) DoCEIS 2019. IAICT, vol. 553, pp. 238–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17771-3_20

    Chapter  Google Scholar 

  26. vf-OS D2.1: Global Architecture Definition – Vs: 1.2.2 (2017). https://ef136c81-3047-408f-b1ec-2955e8231f38.filesusr.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.pdf. Accessed 11 Apr 2020

  27. Stubbs, J., Moreira, W., Dooley, R.: Distributed systems of microservices using Docker and Serfnode. In: 2015 7th International Workshop on Science Gateways (2015). https://doi.org/10.1109/iwsg.2015.16

  28. Corista, P., Giao, J., Sarraipa, J., Garcia Perales, O., Almeida, R., Moalla, N.: Enablers Framework: Developing Applications Using FIWARE. Enterp. Interoperab. 83–89 (2018). https://doi.org/10.1002/9781119564034.ch10

  29. ZDMP D2.4: Manufacturing Reference Model Analysis Document (2019). https://c53c19bc-6460-4dea-a74f-97b851e7af75.filesusr.com/ugd/851c99_57042ac5fb6a4adea44bf9ff81010f5e.pdf. Accessed 02 Aug 2020

  30. Givehchi, O., Landsdorf, K., Simoens, P., Colombo, A.W.: Interoperability for industrial cyber-physical systems: an approach for legacy systems. IEEE Trans. Ind. Inf. 13(6), 3370–3378 (2017). https://doi.org/10.1109/tii.2017.2740434

    Article  Google Scholar 

  31. BEinCPPS D2.4 – IoT Platform Federation (2017). https://6d5a66e7-aea5-4aab-9548-6ced0d99e05c.filesusr.com/ugd/03d390_6264ca6f678642edb48b62cf697fa903.pdf. Accessed 15 Apr 2020

  32. CREMA D3.3 Technical Specification. (2015). https://www.crema-project.eu/media/1082/t33-d33-technical-specification-v100.pdf. Accessed 15 Apr 2020

  33. CREMA D3.2: Functional Specification (2015). https://www.crema-project.eu/media/1086/t32-d32-functional-specification-v100.pdf. Accessed 15 Apr 2020

  34. MANTIS D2.9 Reference architecture and design specification (2018). http://www.mantis-project.eu/wp-content/uploads/2018/07/D2.9_Reference_Architecture_and_Design_Specification_Final_.pdf. Accessed 14 Apr 2020

  35. MANTIS D2.10 Interface, Protocol and Functional Interoperability Guidance and Specification (2018). http://www.mantis-project.eu/wp-content/uploads/2015/10/D2.10_Interface_protocol_and_functional_interoperability_guidance_and_specification_v1.1.pdf. Accessed 14 Apr 2020

  36. vf-OS D1.2: User Scenarios Characterisation – Vs:1.11 (2018). https://ef136c81-3047-408f-b1ec-2955e8231f38.filesusr.com/ugd/0cf731_f0083b20243747619993661dfe6c7d22.pdf. Accessed 15 Apr 2020

  37. RestAssured Deliverable D9.6 Final RestAssured Handbook. Release 1.0 (2019). https://restassuredh2020.eu/wp-content/uploads/2019/12/D9.6.pdf. Accessed 14 Apr 2020

  38. RestAssured Deliverable D3.3 Final High-Level Architecture & Methodology. Release 1.0 (2019). https://restassuredh2020.eu/wp-content/uploads/2019/12/D3.3.pdf. Accessed 14 Apr 2020

  39. DISRUPT Deliverable D2.3 The DISRUPT Platform Integration Plan (2019). http://www.disrupt-project.eu/Files/Deliverables/D2.3-The%20DISRUPT%20Platform%20Integration%20Plan.pdf. Accessed 12 Apr 2020

  40. DISRUPT Deliverable 4.2. Data Analytics Toolkit (2019). http://www.disrupt-project.eu/Files/Deliverables/D4.2-Data_Analytics_Toolkit.pdf. Accessed 12 Apr 2020

  41. DIGICOR D6.2: Knowledge Protection Specification (2018). https://6c97d07e-2d66-4f14-9c19-8c5872c4c3ba.filesusr.com/ugd/2512a7_6256f94aca924310a507df5b8ed7bd8d.pdf. Accessed 15 Apr 2020

  42. DIGICOR D 5.8: Data access API & Reference data store (2019). https://6c97d07e-2d66-4f14-9c19-8c5872c4c3ba.filesusr.com/ugd/2512a7_a332d527b55e46a3935463fdd722453f.pdf. Accessed 15 Apr 2020

  43. I-BiDaaS D6.2: Experiments implementation – initial version (2019). http://www.ibidaas.eu/sites/default/files/docs/ibidaas-d6.2.pdf. Accessed 12 Apr 2020

  44. I-BiDaaS Deliverable D1.3: Positioning of I-BiDaaS (2018) http://www.ibidaas.eu/sites/default/files/docs/Ibidaas-d1.3.pdf. Accessed 12 Apr 2020

  45. GO0DMAN Deliverable 2.1. Multi-Agent Architecture Specification (2017). http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-2.1.pdf. Accessed 16 Apr 2020

  46. GO0DMAN Deliverable 1.2 ZDM Management Methodology (2017). http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-1.2.pdf. Accessed 16 Apr 2020

Download references

Acknowledgments

This work was supported in part by the European Union H2020 Program under grant agreement No. 825631 “Zero Defect Manufacturing Platform (ZDMP)”, and by the Portuguese FCT foundation through the program UIDB/00066/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Nazarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazarenko, A.A., Sarraipa, J., Camarinha-Matos, L.M., Dorchain, M., Jardim-Goncalves, R. (2020). Analysis of Manufacturing Platforms in the Context of Zero-Defect Process Establishment. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds) Boosting Collaborative Networks 4.0. PRO-VE 2020. IFIP Advances in Information and Communication Technology, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-62412-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62412-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62411-8

  • Online ISBN: 978-3-030-62412-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics