A Clustering-Based Collaborative Filtering Recommendation Algorithm via Deep Learning User Side Information | SpringerLink
Skip to main content

A Clustering-Based Collaborative Filtering Recommendation Algorithm via Deep Learning User Side Information

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

  • 1354 Accesses

Abstract

Collaborative filtering (CF) is a widely used recommendation approach that relies on user-item ratings. However, the natural sparsity of user-item ratings can be problematic in many domains, limiting the ability to produce accurate and effective recommendations. Moreover, in some CF approaches only rating information is used to represent users and items, which can lead to a lack of recommendation explained. In this paper, we present a novel deep CF-based recommendation model, which co-learns users’ abundant attributes. To better understanding the user’s preference, we explore user deeper and unseen factors on the user-item ratings and user’s side information by adopting the AutoEncode network. After that, we conduct the k-mean algorithm with extracted deep user factors to classify users. Then the user-side CF algorithm is employed to produce the recommendation list based on the classification results, for alleviating recommendation speed. Finally, we conduct lots of experiments on real-world datasets. Compared with state-of-the-art methods, the results show that the proposed method has a significant improvement in recommendation performance, in terms of recommendation accuracy and diversity. Furthermore, it also enjoys high effectiveness, and the approach is useful when it comes to assigning intuitive meanings to improve the explainability of recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1–2), 101–123 (2012)

    Article  Google Scholar 

  3. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 12 (2009)

    Google Scholar 

  4. Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering. In: International Conference on Computer and Information Technology. IEEE, Dhaka (2002)

    Google Scholar 

  5. Gu, F., Zhang, H., Wang, C.: A two-component deep learning network for SAR image denoising. IEEE Access 8, 17792–17803 (2020)

    Google Scholar 

  6. Deep Learning for Natural Language Parsing: S. Jaf, C. Calder. IEEE Access 7, 131363–131373 (2019)

    Article  Google Scholar 

  7. Khalil, R.A., Jones, E., Babar, M.I., Jan, T., Zafar, M.H., Alhussain, T..: Speech emotion recognition using deep learning techniques: a review. IEEE Access 7, 117327–117345 (2019)

    Google Scholar 

  8. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: WWW 2015 Companion Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)

    Google Scholar 

  9. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-N recommender systems. In: WSDM 2016 Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (2016)

    Google Scholar 

  10. Huang, C.-L. Yeh, P.-H., Lin, C.-W., Wu, D.-C.: Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowl. Based Syst. 56, 86–96 (2014

    Google Scholar 

  11. Yin, B., Yang, Y., Liu, W.: Exploring social activeness and dynamic interest in a community-based recommender system. In: Proceedings of the 23rd International Conference World Wide Web, Seoul, Korea, pp. 771–776 (2014)

    Google Scholar 

  12. Guerraoui, R., Kermarrec, A.-M., Patra, R, Taziki, M.: D2P: distance-based differential privacy in recommenders. VLDB 8(8), 862–873 (2015)

    Google Scholar 

  13. Koohi, H., Kiani, K.: User based collaborative filtering using fuzzy c-means. Measurement 91, 134–139 (2016)

    Google Scholar 

  14. Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)

    Google Scholar 

  15. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manage. J. 17(6), 441–458 (1996)

    Google Scholar 

  16. Arthur, D., Vassilvitskii, S..: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 1027–1035 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chongqing Research Program of Technology Innovation and Application under grants cstc2019jscx-zdztzxX0019, in part by Chongqing Natural Science Foundation under grants cstc2018jcyjAX0047, and Youth Innovation Promotion Association CAS, No. 2017393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Shi, X., Shang, M., Fang, Y. (2020). A Clustering-Based Collaborative Filtering Recommendation Algorithm via Deep Learning User Side Information. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics