Abstract
Collaborative filtering (CF) is a widely used recommendation approach that relies on user-item ratings. However, the natural sparsity of user-item ratings can be problematic in many domains, limiting the ability to produce accurate and effective recommendations. Moreover, in some CF approaches only rating information is used to represent users and items, which can lead to a lack of recommendation explained. In this paper, we present a novel deep CF-based recommendation model, which co-learns users’ abundant attributes. To better understanding the user’s preference, we explore user deeper and unseen factors on the user-item ratings and user’s side information by adopting the AutoEncode network. After that, we conduct the k-mean algorithm with extracted deep user factors to classify users. Then the user-side CF algorithm is employed to produce the recommendation list based on the classification results, for alleviating recommendation speed. Finally, we conduct lots of experiments on real-world datasets. Compared with state-of-the-art methods, the results show that the proposed method has a significant improvement in recommendation performance, in terms of recommendation accuracy and diversity. Furthermore, it also enjoys high effectiveness, and the approach is useful when it comes to assigning intuitive meanings to improve the explainability of recommender systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1–2), 101–123 (2012)
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 12 (2009)
Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering. In: International Conference on Computer and Information Technology. IEEE, Dhaka (2002)
Gu, F., Zhang, H., Wang, C.: A two-component deep learning network for SAR image denoising. IEEE Access 8, 17792–17803 (2020)
Deep Learning for Natural Language Parsing: S. Jaf, C. Calder. IEEE Access 7, 131363–131373 (2019)
Khalil, R.A., Jones, E., Babar, M.I., Jan, T., Zafar, M.H., Alhussain, T..: Speech emotion recognition using deep learning techniques: a review. IEEE Access 7, 117327–117345 (2019)
Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: WWW 2015 Companion Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)
Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-N recommender systems. In: WSDM 2016 Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (2016)
Huang, C.-L. Yeh, P.-H., Lin, C.-W., Wu, D.-C.: Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowl. Based Syst. 56, 86–96 (2014
Yin, B., Yang, Y., Liu, W.: Exploring social activeness and dynamic interest in a community-based recommender system. In: Proceedings of the 23rd International Conference World Wide Web, Seoul, Korea, pp. 771–776 (2014)
Guerraoui, R., Kermarrec, A.-M., Patra, R, Taziki, M.: D2P: distance-based differential privacy in recommenders. VLDB 8(8), 862–873 (2015)
Koohi, H., Kiani, K.: User based collaborative filtering using fuzzy c-means. Measurement 91, 134–139 (2016)
Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)
Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manage. J. 17(6), 441–458 (1996)
Arthur, D., Vassilvitskii, S..: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 1027–1035 (2007)
Acknowledgments
This work was supported by the Chongqing Research Program of Technology Innovation and Application under grants cstc2019jscx-zdztzxX0019, in part by Chongqing Natural Science Foundation under grants cstc2018jcyjAX0047, and Youth Innovation Promotion Association CAS, No. 2017393.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, C., Shi, X., Shang, M., Fang, Y. (2020). A Clustering-Based Collaborative Filtering Recommendation Algorithm via Deep Learning User Side Information. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-62008-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62007-3
Online ISBN: 978-3-030-62008-0
eBook Packages: Computer ScienceComputer Science (R0)