Exploratory Analysis of Radiomics Features on a Head and Neck Cancer Public Dataset | SpringerLink
Skip to main content

Exploratory Analysis of Radiomics Features on a Head and Neck Cancer Public Dataset

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

The prediction of the stage and evolution of cancer is a matter of strong social interest. The head and neck cancer is not one of the most prevalent and deathly cancers, but it is quite challenging due to its morphological variability and the risk of proliferation. In this paper we report results on a radiomics features based machine learning approaches trying to predict (a) the stage of the cancer, (b) the need for surgery, and (c) the survival after 2000 days. Results are encouraging, but a lot of work need to be done in order to attain an accuracy leading to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cancerimagingarchive.net.

  2. 2.

    https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1.

  3. 3.

    https://www.radiomics.io/pyradiomics.html.

References

  1. Aerts, H.J.W.L.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12), 1636–1642 (2016)

    Article  Google Scholar 

  2. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5(1), 4006 (2014)

    Article  MathSciNet  Google Scholar 

  3. Cardenas, C., Mohamed, A., Sharp, G., Gooding, M., Veeraraghavan, H., Yang, J.: Data from AAPM RT-MAC grand challenge 2019. Technical report, The Cancer Imaging Archive (2019)

    Google Scholar 

  4. Chiesa-Estomba, C.M., Echaniz, O., Larruscain, E., Gonzalez-Garcia, J.A., Sistiaga-Suarez, J.A., Graña, M.: Radiomics and texture analysis in laryngeal cancer. Looking for new frontiers in precision medicine through imaging analysis. Cancers 11(10), 1409 (2019)

    Article  Google Scholar 

  5. De Lope, J., Graña, M.: Behavioral activity recognition based on gaze ethograms. Int. J. Neural Syst. 30(07), 2050025 (2020). PMID: 32522069

    Article  Google Scholar 

  6. Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int. J. Cancer 136(5), E359–E386 (2015)

    Article  Google Scholar 

  7. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: Images are more than pictures, they are data. Radiology 278(2), 563–577 (2016). PMID: 26579733

    Article  Google Scholar 

  8. Giraud, P., et al.: Radiomics and machine learning for radiotherapy in head and neck cancers. Front. Oncol. 9, 174 (2019)

    Article  Google Scholar 

  9. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing (2020)

    Google Scholar 

  10. Guezennec, C., et al.: Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET/CT in head and neck squamous cell carcinoma. Head Neck 41(2), 495–502 (2019)

    Google Scholar 

  11. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). Quantitative Imaging in Cancer

    Article  Google Scholar 

  12. Global Burden of Disease Cancer Collaboration: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3(4), 524–548 (2017)

    Google Scholar 

  13. Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M.M., Lambin, P., Aerts, H.J.W.L.: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front. Oncol. 5, 272 (2015)

    Article  Google Scholar 

  14. Scheckenbach, K.: Radiomics: big data statt biopsie in der Zukunft? Laryngo-Rhino-Otol 97(S 01), S114–S141 (2018)

    Article  Google Scholar 

  15. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  16. Wee, L., Dekker, A.: Data from head-neck-radiomics-HN1 [data set]. Technical report, The Cancer Imaging Archive (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Echaniz, O., Chiesa-Estomba, C.M., Graña, M. (2020). Exploratory Analysis of Radiomics Features on a Head and Neck Cancer Public Dataset. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics