Abstract
In this study we investigate the different effects of urban and rural mobility behaviour on congestion and emissions. For this we use a mesoscopic hybrid agent-based network traffic model to simulate traffic in a city on a 1:1 scale. The main advantage of the used model is that it does not need origin-destination data as an input, but rather calculates this information based on mobility behaviour. This makes it possible to produce a population of urban agents, but giving them typical rural mobility behaviour. This changes how much they travel, what method of transport they use, as well as the reason and length of their trips. We can directly compare the resulting congestion, CO\(_2\) emissions and NO\(_X\) emissions with local and temporal resolution and investigate the differences. We find that mobility behaviour has a paramount effect on the traffic system. Simulating an urban area, but using rural mobility behaviour, leads to an increase in emissions of roughly 70% inside the city limits and heavy congestion throughout the city. This result highlights the importance of understanding and shaping mobility behaviour when looking for a sustainable solution to the problems of transportation and mobility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Anderl, S. Haider, C. Lampert, L. Moosmann, K. Pazdernik, D. Pertl, M. Pinterits, S. Poupa, M. Purzner, G. Schmidt et al., Austria Annual Air Emission Inventory 1990–2014: Submission Under National Emission Ceilings Directive2001/81/ec (Umweltbundesamt GmbH, Wien, 2016)
J. Barceló, L. Montero, M. Bullejos, O. Serch, C. Carmona, Dynamic od matrix estimation exploiting bluetooth data in urban networks, in: Proceedings of the 14th International Conference on Automatic Control, Modelling & Simulation, and Proceedings of the 11th International Conference on Microelectronics, Nanoelectronics, Optoelectronics. pp. 116–121. ACMIN’12, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2012)
E. Bert, E. Chung, A.G. Dumont, Exploring the use of dta for origin-destination matrix estimation, in Proceedings of the 6th STRC Swiss Transport Research (01 2006)
G. Boeing, OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)
N. Caceres, J. Wideberg, F. Benitez, Deriving origin–destination data from a mobile phone network. IET Intell. Trans. Syst. 1(1), 15 (2007). https://doi.org/10.1049/iet-its:20060020
C. Carpenter, M. Fowler, A.J. Adler, Generating route-specific origin–destination tables using bluetooth technology. Tran. Res. Rec.: J. Trans. Res. Board 2308(1), 96–102 (2012). https://doi.org/10.3141/2308-10
A. De Palma, D. Rochat, Understanding individual travel decisions: results from a commuters survey in Geneva. Transportation 26(3), 263–281 (1999)
Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator VISSIM, chap. 2, pp. 63–93. Springer (06 2011). https://doi.org/10.1007/978-1-4419-6142-6_2
FGSV: Richtlinien für die Anlage von Straen (RAS) Teil: Querschnitte (RAS-Q). FGSV-Verlag, Kln (2006)
B. Heiden, M. Henn, M. Hinterhofer, O. Schechtner, K. Zelle, Endbericht emissionskataster graz 2001, erstellt im auftrag der steiermärkischen landesregierung (Informations-und Planungssysteme, Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik mbH (FVT) und Arbeitsgemeinschaft für Dokumentations-Graz, 2008)
C. Hofer, G. Jäger, M. Füllsack, Including traffic jam avoidance in an agent-based network model. Comput. Soc. Netw. 5(1), 5 (2018)
C. Hofer, G. Jäger, M. Füllsack, Large scale simulation of co2 emissions caused by urban car traffic: an agent-based network approach. J. Clean. Prod. 183, 1–10 (2018)
C. Hofer, M. Jger., Füllsack, Generating realistic road usage information and origin-destination data for traffic simulations: augmenting agent-based models with network techniques, in International Workshop on Complex Networks and their Applications. pp. 1223–1233. Springer (2017)
F. Höfler, Verkehrswesen-Praxis-Band 1: Verkehrsplanung (2004)
A. Horni, K. Nagel, K. Axhausen (eds.), The Multi-Agent Transport Simulation MATSim. (Ubiquity Press, 2016)
A. Infras, Handbuch emissionsfaktoren des straßenverkehrs version 3.1. Bern, Februar (2010)
A. Jamshidnejad, I. Papamichail, M. Papageorgiou, B. De Schutter, A mesoscopic integrated urban traffic flow-emission model. Trans. Res. Part C: Emer. Technol. 75, 45–83 (2017). https://doi.org/10.1016/j.trc.2016.11.024
G. Kotusevski, K. Hawick, A review of traffic simulation software. Res. Lett. Inf. Math. Sci. 13 (2009)
M. Krzyzanowski, B. Kuna-Dibbert, J. Schneider (eds.), Health Effects of Transport-Related Air Pollution (World Health Organization, 2005)
A.N. Larijani, A.M. Olteanu-Raimond, J. Perret, M. Brédif, C. Ziemlicki, Investigating the mobile phone data to estimate the origin destination flow and analysis; case study: Paris region. Trans. Res. Procedia 6, 64–78 (2015). https://doi.org/10.1016/j.trpro.2015.03.006
P.A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, E. Wießner, Microscopic traffic simulation using sumo, in The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE (2018)
C. Nguyen, L. Soulhac, P. Salizzoni, Source apportionment and data assimilation in urban air quality modelling for NO2: The lyon case study. Atmosphere 9(1), 8 (2018). https://doi.org/10.3390/atmos9010008
T. Nicolai, D. Carr, S. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, E. von Mutius, Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur. Respir. J. 21(6), 956–963 (2003). https://doi.org/10.1183/09031936.03.00041103a
Open Street Map: Open street map (2019)
E. Parlament, E. Rat, Verordnung (eg) nr. 715/2007 des europäischen parlaments und des rates vom 20. juni 2007 über die typgenehmigung von kraftfahrzeugen hinsichtlich der emissionen von leichten personenkraftwagen und nutzfahrzeugen (euro 5 und euro 6) und über den zugang zu reparatur-und wartungsinformationen für fahrzeuge. Amtsblatt der Europäischen Union 29(6) (2007)
K. Pazdernik, M. Anderl, S. Haider, C. Lampert, L. Moosmann, M. Pinterits, S. Poupa, M. Purzner, C. Schmid, G. Schmidt et al., Austria National Inventory Report 2015-Submission Under the United Nations Framework Convention on Climate Change and the Kyoto Protocol (Umweltbundesamt GmbH, Vienna, 2015)
Statistik Austria: Registerzhlung 2011. Statistik Austria Pendlerstatistik (2011)
M. Thériault, M.H. Vandersmissen, M. Lee-Gosselin, D.F. Leroux, Modelling commuter trip length and duration within gis: Application to an od survey. J. Geogr. Inform. Dec. Anal. 3(1), 41–55 (1999)
E. Thonhofer, T. Palau, A. Kuhn, S. Jakubek, M. Kozek, Macroscopic traffic model for large scale urban traffic network design. Simul. Modell. Pract. Theory 80, 32–49 (2018). https://doi.org/10.1016/j.simpat.2017.09.007
R. Tomschy, M. Herry, G. Sammer, R. Klementschitz, S. Riegler, R. Follmer, D. Gruschwitz, F. Josef, S. Gensasz, R. Kirnbauer, et al., Sterreich unterwegs 2013/2014: Ergebnisbericht zur sterreichweiten Mobilittserhebung sterreich unterwegs 2013/2014 (2016)
W.W. Verstraeten, K.F. Boersma, J. Douros, J.E. Williams, H. Eskes, F. Liu, S. Beirle, A. Delcloo, Top-down NOX emissions of european cities based on the downwind plume of modelled and space-borne tropospheric NO2 columns. Sensors 18(9), 2893 (2018). https://doi.org/10.3390/s18092893
M. Weiss, P. Bonnel, R. Hummel, U. Manfredi, R. Colombo, G. Lanappe, P. Le Lijour, M. Sculati et al., Analyzing on-road emissions of light-duty vehicles with portable emission measurement systems (pems). JRC Sci. Tec. Rep., EUR 24697 (2011)
S. Zegeye, B. De Schutter, J. Hellendoorn, E. Breunesse, A. Hegyi, Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes. Trans. Res. Part C: Emer. Technol. 31, 158-171 (2013). https://doi.org/10.1016/j.trc.2013.01.002
F.B. Zhan, C.E. Noon, Shortest path algorithms: an evaluation using real road networks. Trans. Sci. 32(1), 65–73 (1998)
K. Zhang, S. Batterman, Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450-451, 307–316 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.074
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Plakolb, S., Jäger, G., Hofer, C., Füllsack, M. (2021). The Effect of Urban and Rural Mobility Behaviour on Congestion and Emissions Resulting from Private Motorized Traffic. In: Ahrweiler, P., Neumann, M. (eds) Advances in Social Simulation. ESSA 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-61503-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-61503-1_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61502-4
Online ISBN: 978-3-030-61503-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)