Abstract
Timed automata (TA) constitute a mature formalism for discrete-state/continuous-time behavior of time-critical cyber-physical systems. Concerning the fundamental analysis problem of comparing a candidate implementation against a specification both given as TA, it has been shown that timed trace equivalence is undecidable, whereas timed bisimulation is decidable. However, the limited expressiveness of TA is a serious obstacle in practice such that many TA extensions have been proposed. For instance, parametric timed automata (PTA) incorporate parametric clock constraints with freely-adjustable time intervals thus generalizing the constant time bounds of TA. In this way, PTA constitute a promising theoretical foundation for re-engineering static real-time specifications, originally given as TA, in a generic and customizable way. In this paper, we provide, to the best of our knowledge, the first proposal for lifting the notion of timed bisimulation from TA to PTA. Unfortunately, as PTA are Turing-complete, most interesting semantic properties being decidable for TA (including timed bisimulation), become undecidable for PTA. To tackle this issue, we propose an over-approximation of PTA semantics in terms of plain TA semantics and investigate decidability properties of a promising sub-class of PTA, called L/U-PTA.
L. Luthmann—This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.
H. Göttmann—This work has been funded by the German Research Foundation (DFG) as part of project A4 within the Collaborative Research Center (CRC) 1053 MAKI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032042
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC 1993, pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242
Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_1
André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29510-7_3
André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 21(2), 203–219 (2017). https://doi.org/10.1007/s10009-017-0467-0
Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3
Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36(2,3), 145–182 (1998). https://doi.org/10.3233/FI-1998-36233
Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_24
Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and verification of real-time software product lines. In: Proceedings of the 16th International Software Product Line Conference, vol. 1, pp. 66–75. ACM (2012)
Guha, S., Krishna, S.N., Narayan, C., Arun-Kumar, S.: A unifying approach to decide relations for timed automata and their game characterization. In: EXPRESS/SOS’13. EPTCS, vol. 120 (2013). https://doi.org/10.4204/EPTCS.120.5
Guha, S., Narayan, C., Arun-Kumar, S.: On decidability of prebisimulation for timed automata. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 444–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_33
Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031995
Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994). https://doi.org/10.1006/inco.1994.1045
Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1
Liva, G., Khan, M.T., Pinzger, M.: Extracting timed automata from java methods. In: 2017 IEEE 17th International Working Conference on Source Code Analysis and Manipulation (SCAM), pp. 91–100. IEEE (2017)
Luthmann, L., Stephan, A., Bürdek, J., Lochau, M.: Modeling and testing product lines with unbounded parametric real-time constraints. In: Proceedings of the 21st International Systems and Software Product Line Conference - Volume A, SPLC 2017, pp. 104–103. ACM, New York (2017). https://doi.org/10.1145/3106195.3106204
Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039073
Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: theory and application. Inf. Comput. 114(1), 131–178 (1994). https://doi.org/10.1006/inco.1994.1083
Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development of real-time systems. Comput. Sci. Rev. 9, 1–26 (2013). https://doi.org/10.1016/j.cosrev.2013.05.001
Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 177–188. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023458
Wang, Y.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039080
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lochau, M., Luthmann, L., Göttmann, H., Bacher, I. (2020). Parametric Timed Bisimulation. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12477. Springer, Cham. https://doi.org/10.1007/978-3-030-61470-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-61470-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61469-0
Online ISBN: 978-3-030-61470-6
eBook Packages: Computer ScienceComputer Science (R0)