Abstract
The Shift2Rail Innovation Programme (IP) is focussing on innovative technologies to enhance the overall railway market segments. Formal methods and standard interfaces have been identified as two key concepts to reduce time-to-market and costs, while ensuring safety, interoperability and standardisation. However, the decision to start using formal methods is still deemed too risky. Demonstrating technical and commercial benefits of both formal methods and standard interfaces is necessary to address the obstacles of learning curve and lack of clear cost/benefit analysis that are hindering their adoption, and this is the goal of the 4SECURail project, recently funded by the Shift2Rail IP. In this paper, we provide the reasoning and the rationale for designing the formal methods demonstrator for the 4SECURail project. The design concerns two important issues that have been analysed: (i) the usefulness of formal methods from the point of view of the infrastructure managers, (ii) the adoption of a semi-formal SysML notation within our formal methods demonstrator process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
References
Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)
ASTRail Deliverable D4.3: Validation Report. http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
Basile, D., et al.: On the industrial uptake of formal methods in the railway domain. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_2
ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-checking approach for the analysis of abstract system properties. Sci. Comput. Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002
ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the railways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_46
Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of the 3rd International Conference on the Quantitative Evaluation of SysTems (QEST 2006), pp. 125–126. IEEE (2006). https://doi.org/10.1109/QEST.2006.59
Bendisposto, J., et al.: ProB 2.0 tutorial. In: Butler, M., Hallerstede, S., Waldén, M. (eds.) Proceedings of the 4th Rodin User and Developer Workshop. TUCS Lecture Notes, Turku Centre for Computer Science (2013)
Berglehner, R., Rasheeq, A.: An approach to improve SysML railway specification using UML-B and EVENT-B. In: Poster at the 3rd International Conference on Reliability, Safety, and Security of Railway Systems: Modelling, Analysis, Verification, and Certification (RSSRail 2019) (2019). https://doi.org/10.13140/RG.2.2.21925.45288
Bernardi, S., et al.: Enabling the usage of UML in the verification of railway systems: the DAM-rail approach. Rel. Eng. Syst. Saf. 120, 112–126 (2013). https://doi.org/10.1016/j.ress.2013.06.032
Besnard, V., Brun, M., Jouault, F., Teodorov, C., Dhaussy, P.: Unified LTL verification and embedded execution of UML models. In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS 2018), pp. 112–122. ACM (2018). https://doi.org/10.1145/3239372.3239395
Bhaduri, P., Ramesh, S.: Model Checking of Statechart Models: Survey and Research Directions. CoRR cs.SE/0407038 (2004). http://arxiv.org/abs/cs.SE/0407038
Broy, M., Crane, M.L., Dingel, J., Hartman, A., Rumpe, B., Selic, B.: 2\(^{nd}\) UML 2 semantics symposium: formal semantics for UML. In: Kühne, T. (ed.) MODELS 2006. LNCS, vol. 4364, pp. 318–323. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69489-2_39
Bui, N.L.: An analysis of the benefits of EULYNX-style requirements modeling for ProRail. Ph.D. thesis, Technische Universiteit Eindhoven (2017). https://research.tue.nl/files/91220589/2017_09_28_ST_Bui_L.pdf
Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2
Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_8
Caltais, G., Leitner-Fischer, F., Leue, S., Weiser, J.: SysML to NuSMV model transformation via object-orientation. In: Berger, C., Mousavi, M.R., Wisniewski, R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 31–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51738-4_3
Chen, J., Cui, H.: Translation from adapted UML to Promela for CORBA-based applications. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 234–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6_17
Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten years of performance evaluation for concurrent systems using CADP. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0_18
Crane, M.L., Dingel, J.: UML vs. classical vs. Rhapsody statecharts: not all models are created equal. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 97–112. Springer, Heidelberg (2005). https://doi.org/10.1007/11557432_8
Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_15
European Committee for Electrotechnical Standardization: CENELEC EN 50128 – Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems, June 2011. https://standards.globalspec.com/std/1678027/cenelec-en-50128
Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_13
Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: challenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_18
Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applications to railway signaling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for Industrial Critical Systems: A Survey of Applications, chap. 4, pp. 61–84. Wiley (2013). https://doi.org/10.1002/9781118459898.ch4
Fecher, H., Schönborn, J., Kyas, M., de Roever, W.-P.: 29 new unclarities in the semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280_5
Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15
Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013). https://doi.org/10.1109/MS.2013.44
Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing formal tools for system design: a judgment study. In: Proceedings of the 42nd International Conference on Software Engineering (ICSE), pp. 62–74. ACM (2020). https://doi.org/10.1145/3377811.3380373
Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal methods. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1
Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_1
Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3: a parallel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167 (2016). https://doi.org/10.1007/s10009-015-0377-y
Grumberg, O., Meller, Y., Yorav, K.: Applying software model checking techniques for behavioral UML models. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_25
Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos, O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_12
Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I.: Model checking dynamic and hierarchical UML state machines. In: Proceedings of the 3rd International Workshop on Model Development, Validation and Verification (MoDeVa 2006), pp. 94–110. University of Queensland (2006)
Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–414. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_23
Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with temporal logics combining weak and strong modalities. TACAS 2020. LNCS, vol. 12079, pp. 57–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_4
Liu, S., et al.: A formal semantics for complete UML state machines with communications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8_23
Löfving, C., Borälv, A: X2Rail-2 Deliverable D5.1, Formal Methods (Taxonomy and Survey), Proposed Methods and Applications, May 2018. https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8
Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3
ModelDriven: The fUML Reference Implementation. https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
Ober, I., Graf, S., Ober, I.: Validation of UML models via a mapping to communicating extended timed automata. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 127–145. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6_9
Object Management Group: Unified Modelling Language, December 2017. https://www.omg.org/spec/UML/About-UML/
Object Management Group: Precise Semantics of UML Composite Structure (PSCS), March 2018. https://www.omg.org/spec/PSCS/1.1/PDF
Object Management Group: OMG Systems Modeling Language (OMG SysML), November 2019. http://www.omg.org/spec/SysML/1.6/
Oliveira, R., Dingel, J.: Supporting model refinement with equivalence checking in the context of model-driven engineering with UML-RT. In: Burgueño, L., et al. (eds.) Proceedings of the 20th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2017) – Satellite Events. CEUR Workshop Proceedings, vol. 2019, pp. 307–314. CEUR-WS.org (2017). http://ceur-ws.org/Vol-2019/modevva_2.pdf
OMG: Action Language for Foundational UML (Alf) – Concrete Syntax for a UML Action Language, July 2017. https://www.omg.org/spec/ALF/1.1
OMG: Semantics of a Foundational Subset for Executable UML Models (fUML), December 2018. https://www.omg.org/spec/FUML/1.4/PDF
Pétin, J.F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal methods for safety requirements verification. In: Proceedings of the 22nd International Conference on Software & Systems Engineering and their Applications (ICSSEA 2010) (2010). https://hal.archives-ouvertes.fr/hal-00533311/document
Simons, A.J.H., Graham, I.: 30 things that go wrong in object modelling with UML 1.3. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and Systems. SECS, vol. 523, pp. 237–257. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4615-5229-1_17
Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_13
UNISIG: RBC-RBC Safe Communication Interface – SUBSET-098, February 2012. https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
UNISIG: FIS for the RBC/RBC Handover – SUBSET-039, December 2015. https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
Visual Paradigm: What is Unified Modeling Language (UML)?. https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Improvements towards formalizing UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC 2005), pp. 176–184. IEEE (2005). https://doi.org/10.1109/APSEC.2005.70
Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state machines. In: Proceedings of the 4th International Conference on Secure Software Integration and Reliability Improvement (SSIRI-C 2010), pp. 1–6. IEEE (2010). https://doi.org/10.1109/SSIRI-C.2010.11
Acknowledgements
This work has been partially funded by the 4SECURail project. The 4SECURail project received funding from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 881775 in the context of the open call S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the programme H2020-S2RJU-2019. The content of this paper reflects only the authors’ view and the Shift2Rail Joint Undertaking is not responsible for any use that may be made of the included information.
We also would like to thank the Italian MIUR PRIN 2017FTXR7S project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Basile, D. et al. (2020). Designing a Demonstrator of Formal Methods for Railways Infrastructure Managers. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Applications. ISoLA 2020. Lecture Notes in Computer Science(), vol 12478. Springer, Cham. https://doi.org/10.1007/978-3-030-61467-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-61467-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61466-9
Online ISBN: 978-3-030-61467-6
eBook Packages: Computer ScienceComputer Science (R0)