Abstract
The development of treatments based on the patient’s individual characteristics has been an emergent medical approach. The objective is to improve individual responses and overall survival. Thus, there is a need for computational tools able to identify and describe subgroups of patients for which the survival response significantly differs from the overall behaviour. However, there are few algorithms that address this matter. The majority of works of literature aim at building predictive models rather than understanding the characteristics that delineate subgroups with unusual survival. The approaches that provide understanding on factors that interfere in the survival behaviour usually resort to the stratification of the data based on previously known variable’s interactions, lacking the ability to shed light into new, possibly unknown, interactions. In contrast to the existent predictive approaches, we propose the use of supervised descriptive pattern mining in order to discover local patterns able to describe subsets of patients that present unusual survival behaviour. In this paper, we present the ESM-AM (Exceptional Survival Model Ant Miner) algorithm, an Exceptional Model Mining approach to the discovery of subgroups with exceptional survival functions that explores the use of ant-colony optimization as search heuristic for the pattern mining task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LR-Rules algorithm: https://github.com/adaa-polsl/LR-Rules/releases.
- 2.
ESM-AM algorithm website: https://github.com/jbmattos/ESM-AM_bracis2020.
References
Atzmueller, M.: Subgroup discovery. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 5, 35–49 (2015)
Bazan, J., Osmólski, A., Skowron, A., Ślçezak, D., Szczuka, M., Wróblewski, J.: Rough set approach to the survival analysis. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 522–529. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45813-1_69
Bradburn, M.J., Clark, T.G., Love, S., Altman, D.: Survival analysis part ii: multivariate data analysis-an introduction to concepts and methods. Br. J. Cancer 89(3), 431 (2003)
Carmona, C.J., González, P., del Jesus, M.J., Herrera, F.: Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 4(2), 87–103 (2014)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Discov. 30(1), 47–98 (2016). https://doi.org/10.1007/s10618-015-0403-4
Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 18(17–18), 2529–2545 (1999)
Helal, S.: Subgroup discovery algorithms: a survey and empirical evaluation. J. Comput. Sci. Technol. 31(3), 561–576 (2016). https://doi.org/10.1007/s11390-016-1647-1
Herrera, F., Carmona, C.J., González, P., Del Jesus, M.J.: An overview on subgroup discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011). https://doi.org/10.1007/s10115-010-0356-2
Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)
Kleinbaum, D.G.: Survival analysis, a self-learning text. Biomet. J.: J. Math. Methods Biosci. 40(1), 107–108 (1998)
Kronek, L.P., Reddy, A.: Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data. Bioinformatics 24(16), i248–i253 (2008)
Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_1
Liu, X., Minin, V., Huang, Y., Seligson, D.B., Horvath, S.: Statistical methods for analyzing tissue microarray data. J. Biopharm. Stat. 14(3), 671–685 (2004)
Lucas, T., Silva, T.C., Vimieiro, R., Ludermir, T.B.: A new evolutionary algorithm for mining top-k discriminative patterns in high dimensional data. Appl. Soft Comput. 59, 487–499 (2017)
Lucas, T., Vimieiro, R., Ludermir, T.: SSDP+: a diverse and more informative subgroup discovery approach for high dimensional data. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)
Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res. 10(Feb), 377–403 (2009)
Park, J.V., Park, S.J., Yoo, J.S.: Finding characteristics of exceptional breast cancer subpopulations using subgroup mining and statistical test. Expert Syst. Appl. 118, 553–562 (2019)
Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)
Pattaraintakorn, P., Cercone, N.: A foundation of rough sets theoretical and computational hybrid intelligent system for survival analysis. Comput. Math. Appl. 56(7), 1699–1708 (2008)
Peto, R., et al.: Design and analysis of randomized clinical trials requiring prolonged observation of each patient. ii. Analysis and examples. Br. J. Cancer 35(1), 1 (1977)
Pontes, T., Vimieiro, R., Ludermir, T.B.: SSDP: a simple evolutionary approach for top-k discriminative patterns in high dimensional databases. In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 361–366. IEEE (2016)
Sikora, M., et al.: Censoring weighted separate-and-conquer rule induction from survival data. Methods Inf. Med. 53(02), 137–148 (2014)
Sikora, M., Mielcarek, M., Kałwak, K., et al.: Application of rule induction to discover survival factors of patients after bone marrow transplantation. J. Med. Inform. Technol. 22, 35–53 (2013)
Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey. ACM Comput. Surv. (CSUR) 51(6), 110 (2019)
Wróbel, Ł.: Tree-based induction of decision list from survival data. J. Med. Inform. Technol. 20, 73–78 (2012). http://jmit.us.edu.pl/cms/index.php?page=vol-20-2012
Wróbel, Ł., Gudyś, A., Sikora, M.: Learning rule sets from survival data. BMC Bioinform. 18(1), 285 (2017). https://doi.org/10.1186/s12859-017-1693-x
Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by the National Council for Scientific and Technological Development – CNPq.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mattos, J.B., Silva, E.G., de Mattos Neto, P.S.G., Vimieiro, R. (2020). Exceptional Survival Model Mining. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-61380-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61379-2
Online ISBN: 978-3-030-61380-8
eBook Packages: Computer ScienceComputer Science (R0)