Abstract
The management of issues related to water resources, a highly complex domain, has increasingly highlighted the critical role of knowledge towards shared, useful and effective planning decisions.
Hydrology is an applied science with a very large theoretical base, its corpus borders with many others science domains. The clarification of theoretical, methodological, data, language and meaning issues and differences is of central importance. Therefore, the development of a knowledge management system with semantic extensions can meet some of the needs described.
The main objective of this work is to investigate the potential for implementing a knowledge management system with semantic extensions, as well as to propose a functional architecture.
To achieve that, first a KMS with semantic exstensions has been implemented and then the same system has been populated with an experimental knowledge content.
Furthermore, a bottom-up extraction from the KMS of a simple ontology representing the data inserted in the KMS is considered, in order to show the KMS feature of clarifying and improving inter-domain communication, to enhance a common semantic understanding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apache. https://httpd.apache.org/
Extension: page\(\_\)forms. https://www.mediawiki.org/wiki/Extension:Page_Forms
Extension: scribunto. https://www.mediawiki.org/wiki/Extension:Scribunto
Extensions: parserhooks. https://github.com/JeroenDeDauw/ParserHooks
Extensions: validators. https://github.com/DataValues/Validators
Extension: templatedata. https://www.mediawiki.org/wiki/Extension:TemplateData
Extension: wikieditor. https://www.mediawiki.org/wiki/Extension:WikiEditor
Lua. http://www.lua.org/
Mediawiki. https://www.mediawiki.org/
Mysql. https://www.mysql.com/
Php. https://php.net/
Semantic-mediawiki. https://www.semantic-mediawiki.org/
Ubuntu. https://www.ubuntu.com/
Virtualbox. https://www.virtualbox.org/
Baldassarre, G.D., Brandimarte, L., Beven, K.: The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrol. Sci. J. 61(9), 1748–1758 (2016). https://doi.org/10.1080/02626667.2015.1091460
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrol. Sci. J. 61(9), 1652–1665 (2016). https://doi.org/10.1080/02626667.2015.1031761
Beven, K., Freer, J.: A dynamic TOPMODEL. Hydrol. Process. 15(10), 1993–2011 (2001). https://doi.org/10.1002/hyp.252
Beven, K., Kirkby, M.: A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 24(1), 43–69 (1979). https://doi.org/10.1080/02626667909491834
Beven, K., Kirkby, M., Schofield, N., Tagg, A.: Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. J. Hydrol. 69(1–4), 119–143 (1984). https://doi.org/10.1016/0022-1694(84)90159-8
Beven, K., Lamb, R., Quinn, P., Romanowicz, R., Freer, J.: TOPMODEL, pp. 627–668. Water Resources Pubns (1995)
Borri, D., Camarda, D., Grassini, L.: Complex knowledge in the environmental domain: building intelligent architectures for water management. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 762–772. Springer, Heidelberg (2005). https://doi.org/10.1007/11504894_106
Devia, G.K., Ganasri, B., Dwarakish, G.: A review on hydrological models. Aquat. Procedia 4, 1001–1007 (2015). https://doi.org/10.1016/j.aqpro.2015.02.126
Endrizzi, S., Gruber, S., Dall’Amico, M., Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci. Model Dev. 7(6), 2831–2857 (2014). https://doi.org/10.5194/gmd-7-2831-2014
Gong, W., Gupta, H.V., Yang, D., Sricharan, K., Hero, A.O.: Estimating epistemic and aleatory uncertainties during hydrologic modeling: an information theoretic approach. Water Resour. Res. 49(4), 2253–2273 (2013). https://doi.org/10.1002/wrcr.20161
Grayson, R.B., Blöschl, G., Moore, I.D.: Distributed parameter hydrologic modelling using vector elevation data: THALES and TAPES-C, Chap. 19, pp. 669–696. Water Resources Pubns (1995)
Grayson, R.B., Moore, I.D., McMahon, T.A.: Physically based hydrologic modeling: 1. a terrain-based model for investigative purposes. Water Resour. Res. 28(10), 2639–2658 (1992). https://doi.org/10.1029/92wr01258
Grayson, R.B., Moore, I.D., McMahon, T.A.: Physically based hydrologic modeling: 2. is the concept realistic? Water Resour. Res. 28(10), 2659–2666 (1992). https://doi.org/10.1029/92wr01259
Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995). https://doi.org/10.1006/ijhc.1995.1081
Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum. Comput. Stud. 43(5–6), 625–640 (1995). https://doi.org/10.1006/ijhc.1995.1066
Krueger, T., Maynard, C., Carr, G., Bruns, A., Mueller, E.N., Lane, S.: A transdisciplinary account of water research. Wiley Interdisc. Rev. Water 3(3), 369–389 (2016). https://doi.org/10.1002/wat2.1132
Manfreda, S., Fiorentino, M., Iacobellis, V.: DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Adv. Geosci. 2, 31–39 (2005). https://doi.org/10.5194/adgeo-2-31-2005
Montanari, A., et al.: “panta rhei—everything flows”: change in hydrology and society—the IAHS scientific decade 2013–2022. Hydrol. Sci. J. 58(6), 1256–1275 (2013). https://doi.org/10.1080/02626667.2013.809088
Musen, M.A.: The protégé project. AI Matters 1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003
Nearing, G.S., Tian, Y., Gupta, H.V., Clark, M.P., Harrison, K.W., Weijs, S.V.: A philosophical basis for hydrological uncertainty. Hydrol. Sci. J. 61(9), 1666–1678 (2016). https://doi.org/10.1080/02626667.2016.1183009
Rigon, R., Bertoldi, G., Over, T.M.: GEOtop: a distributed hydrological model with coupled water and energy budgets. J. Hydrometeorol. 7(3), 371–388 (2006). https://doi.org/10.1175/jhm497.1
Shiva, V.: Water Wars: Privatization, Pollution, and Profit. North Atlantic Books, Berkeley (2016)
Singh, V.: Hydrologic Systems, vol. 1. Prentice-Hall, New York (1988). https://books.google.it/books?id=MBVkjgEACAAJ
Yates, J.S., Harris, L.M., Wilson, N.J.: Multiple ontologies of water: politics, conflict and implications for governance. Environ. Plan. D Soc. Space 35(5), 797–815 (2017). https://doi.org/10.1177/0263775817700395
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Patano, M., Camarda, D., Iacobellis, V. (2020). The Cooperative Management of Complex Knowledge in Planning: Building a Semantic-Based Model for Hydrological Issues. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2020. Lecture Notes in Computer Science(), vol 12341. Springer, Cham. https://doi.org/10.1007/978-3-030-60816-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-60816-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60815-6
Online ISBN: 978-3-030-60816-3
eBook Packages: Computer ScienceComputer Science (R0)