Prediction of lncRNA-miRNA Interactions via an Embedding Learning Graph Factorize Over Heterogeneous Information Network | SpringerLink
Skip to main content

Prediction of lncRNA-miRNA Interactions via an Embedding Learning Graph Factorize Over Heterogeneous Information Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 942 Accesses

Abstract

An increasing number of studies show that identification of lncRNA-miRNA interactions (LMIs) helps the researchers to understand lncRNAs functions and the mechanism of involved complicated diseases. However, biological techniques for detecting lncRNA-miRNAs interactions are costly and time-consuming. Recently, many computational methods have been developed to predict LMIs, but only a few can perform the prediction from a network-based point of view. In this article, we propose a novel computational method to predict potential interactions between lncRNA and miRNA via an embedding learning graph factorize over a heterogeneous information network. Specifically, a large-scale heterogeneous information network is built by combing the associations among proteins, drugs, miRNAs, diseases, and lncRNAs. Then, a graph embedding model Graph Factorization is employed to learn vector representations for all miRNA and lncRNA in the heterogeneous network. Finally, the integrated features are fed to a classifier to predict new lncRNA-miRNA interactions. In the experiment, the proposed method performed good prediction results with AUC of 0.9660 under five-fold cross-validation. The experimental results demonstrate our method as an outperform way to predict potential associations between lncRNAs and miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guttman, M., et al.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009)

    Article  Google Scholar 

  2. Mattick, J.S.: The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009)

    Article  Google Scholar 

  3. Lander, E.S., et al.: Initial Sequencing and Analysis of the Human Genome (2001)

    Google Scholar 

  4. Kapranov, P., et al.: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)

    Article  Google Scholar 

  5. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucl. Acids Res. 41, D983–D986 (2012)

    Article  Google Scholar 

  6. Li, Y., et al.: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucl. Acids Res. 42, D1070–D1074 (2014)

    Google Scholar 

  7. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucl. Acids Res. gkw937 (2016)

    Google Scholar 

  8. Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinf. 18, 558–576 (2017)

    Google Scholar 

  9. Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genet. 10, 90 (2019)

    Article  Google Scholar 

  10. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Qiu, Y., Hu, P.-W.: Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genom. 20, 1–10 (2019)

    Article  Google Scholar 

  11. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., Yi, H.-C.: Prediction of self-interacting proteins from protein sequence information based on random projection model and fast Fourier transform. Int. J. Mol. Sci. 20, 930 (2019)

    Article  Google Scholar 

  12. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34, 812–819 (2018)

    Article  Google Scholar 

  13. You, Z.-H., et al.: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13, e1005455 (2017)

    Article  Google Scholar 

  14. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47, 731–743 (2016)

    Article  Google Scholar 

  15. Zheng, K., You, Z.-H., Li, J.-Q., Wang, L., Guo, Z.-H., Huang, Y.-A.: iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation. PLoS Comput. Biol. 16, e1007872 (2020)

    Article  Google Scholar 

  16. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: DBMDA: a unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations. Mol. Therap. Nucl. Acids 19, 602–611 (2020)

    Article  Google Scholar 

  17. Li, S., You, Z.-H., Guo, H., Luo, X., Zhao, Z.-Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46, 1229–1241 (2015)

    Article  Google Scholar 

  18. Ye, S., Yang, L., Zhao, X., Song, W., Wang, W., Zheng, S.: Bioinformatics method to predict two regulation mechanism: TF–miRNA–mRNA and lncRNA–miRNA–mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)

    Article  Google Scholar 

  19. Jansen, R., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003)

    Article  Google Scholar 

  20. You, Z.-H., Lei, Y.-K., Zhu, L., Xia, J., Wang, B.: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinf. 14, S10 (2013). https://doi.org/10.1186/1471-2105-14-S8-S10

    Article  Google Scholar 

  21. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Therap. Nucl. Acids 11, 337–344 (2018)

    Article  Google Scholar 

  22. Suresh, V., Liu, L., Adjeroh, D., Zhou, X.: RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucl. Acids Res. 43, 1370–1379 (2015)

    Article  Google Scholar 

  23. Wang, L., You, Z.-H., Chen, X., Yan, X., Liu, G., Zhang, W.: RFDT: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Peptide Sci. 19, 445–454 (2018)

    Article  Google Scholar 

  24. Shi, H., et al.: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst. Biol. 7, 101 (2013)

    Article  Google Scholar 

  25. Peng, J., et al.: A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 35, 4364–4371 (2019)

    Article  Google Scholar 

  26. Griffiths-Jones, S., Saini, H.K., Van Dongen, S., Enright, A.J.: miRBase: tools for microRNA genomics. Nucl. Acids Res. 36, D154–D158 (2007)

    Article  Google Scholar 

  27. Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucl. Acids Res. 46, D308–D314 (2018)

    Article  Google Scholar 

  28. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucl. Acids Res. 36, D901–D906 (2008)

    Article  Google Scholar 

  29. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88, 265 (2000)

    Google Scholar 

  30. Miao, Y.-R., Liu, W., Zhang, Q., Guo, A.-Y.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucl. Acids Res. 46, D276–D280 (2018)

    Article  Google Scholar 

  31. Huang, Z., et al.: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucl. Acids Res. 47, D1013–D1017 (2019)

    Google Scholar 

  32. Chou, C.-H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucl. Acids Res. 46, D296–D302 (2018)

    Article  Google Scholar 

  33. Cheng, L., et al.: LncRNA2Target v2. 0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucl. Acids Res. 47, D140–D144 (2019)

    Google Scholar 

  34. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucl. Acids Res. gkw943 (2016)

    Google Scholar 

  35. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46, D1074–D1082 (2018)

    Google Scholar 

  36. Davis, A.P., et al.: The comparative toxicogenomics database: update 2017. Nucl. Acids Res. 45, D972–D978 (2017)

    Article  MathSciNet  Google Scholar 

  37. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Xinjiang Natural Science Foundation under Grant 2017D01A78.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, JR., You, ZH., Cheng, L., Zhou, X., Li, HY. (2020). Prediction of lncRNA-miRNA Interactions via an Embedding Learning Graph Factorize Over Heterogeneous Information Network. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics