Highlight Removal in Facial Images | SpringerLink
Skip to main content

Highlight Removal in Facial Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Included in the following conference series:

Abstract

In this paper, we present a method for highlight removal in facial images. In contrast to previous works relying on physical models such as dichromatic reflection models, we adopt the structure of conditional generative adversarial network (CGAN) to generate highlight-free images. By taking the facial images with specular highlight as the condition, the network predicts the corresponding highlight-free images. Meanwhile, a novel mask loss is introduced through highlight detection, which aims to make the network focus on more on the highlight regions. With the help of multi-scale discriminators, our method generates highlight-free images with high-quality details and fewer artifacts. We also built a dataset containing both real and synthetic facial images, which is, to our best knowledge, the largest image dataset for facial highlight removal. By comparing with the state-of-the-arts, our method shows high effectiveness and strong robustness in different lighting environments.

The first author is a student.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fu, G., Zhang, Q., Song, C., Lin, Q., Xiao, C.: Specular highlight removal for real-world images. Comput. Graph. Forum 38, 253–263 (2019)

    Article  Google Scholar 

  2. Kim, H., Jin, H., Hadap, S., Kweon, I.: Specular reflection separation using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1460–1467 (2013)

    Google Scholar 

  3. Li, C., Lin, S., Zhou, K., Ikeuchi, K.: Specular highlight removal in facial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3107–3116 (2017)

    Google Scholar 

  4. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  5. Meslouhi, O., Kardouchi, M., Allali, H., Gadi, T., Benkaddour, Y.: Automatic detection and inpainting of specular reflections for colposcopic images. Open Comput. Sci. 1(3), 341–354 (2011)

    Article  Google Scholar 

  6. Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color images. Int. J. Comput. Vision 2(1), 7–32 (1988)

    Article  Google Scholar 

  7. Schluns, K., Teschner, M.: Analysis of 2D color spaces for highlight elimination in 3d shape reconstruction. Proc. ACCV. 2, 801–805 (1995)

    Google Scholar 

  8. Bajcsy, R., Lee, S.W., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. Int. J. Comput. Vision 17(3), 241–272 (1996)

    Article  Google Scholar 

  9. Suo, J., An, D., Ji, X., Wang, H., Dai, Q.: Fast and high quality highlight removal from a single image. IEEE Trans. Image Process. 25(11), 5441–5454 (2016)

    Article  MathSciNet  Google Scholar 

  10. Yang, Q., Wang, S., Ahuja, N.: Real-time specular highlight removal using bilateral filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_7

    Chapter  Google Scholar 

  11. Liu, Y., Yuan, Z., Zheng, N., Wu, Y.: Saturation-preserving specular reflection separation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3725–3733 (2015)

    Google Scholar 

  12. Guo, J., Zhou, Z., Wang, L.: Single image highlight removal with a sparse and low-rank reflection model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_17

    Chapter  Google Scholar 

  13. Shen, H.L., Zhang, H.G., Shao, S.J., Xin, J.H.: Chromaticity-based separation of reflection components in a single image. Pattern Recogn. 41(8), 2461–2469 (2008)

    Article  Google Scholar 

  14. Souza, C.S., Macedo, M.C.F., Nascimento, V.P., Oliveira, B.S.: Real-time high-quality specular highlight removal using efficient pixel clustering. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images, pp. 56–63. IEEE (2018)

    Google Scholar 

  15. Yi, R., Zhu, C., Tan, P., Lin, S.: Faces as lighting probes via unsupervised deep highlight extraction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 321–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_20

    Chapter  Google Scholar 

  16. Tan, P., Lin, S., Quan, L., Shum, H.Y.: Highlight removal by illumination constrained inpainting. In: Proceedings Ninth IEEE International Conference on Computer Vision, pp. 164–169. IEEE (2003)

    Google Scholar 

  17. Tan, P., Quan, L., Lin, S.: Separation of highlight reflections on textured surfaces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1855–1860. IEEE (2006)

    Google Scholar 

  18. Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. 38(4), 79:1–79:12 (2019)

    Google Scholar 

  19. Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep Single-image portrait relighting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7194–7202 (2019)

    Google Scholar 

  20. Meka, A., et al.: Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination. ACM Trans. Graph. 38(4), 1–12 (2019)

    Article  Google Scholar 

  21. Li, Y., Liu, M.-Y., Li, X., Yang, M.-H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 468–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_28

    Chapter  Google Scholar 

  22. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4990–4998 (2017)

    Google Scholar 

  23. Character Creator. https://www.reallusion.com/character-creator/

  24. VISIA. https://www.canfieldsci.com/imaging-systems/visia-cr/

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  27. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, pp. 1–15 (2014)

  28. Shen, H.L., Cai, Q.Y.: Simple and efficient method for specularity removal in an image. Appl. Opt. 48(14), 2711–2719 (2009)

    Article  Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, T., Xia, S., Bian, Z., Lu, C. (2020). Highlight Removal in Facial Images. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics