Edge Elimination and Weighted Graph Classes | SpringerLink
Skip to main content

Edge Elimination and Weighted Graph Classes

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Abstract

Edge-weighted graphs play an important role in the theory of Robinsonian matrices and similarity theory, particularly via the concept of level graphs, that is, graphs obtained from an edge-weighted graph by removing all sufficiently light edges. This naturally leads to a generalization of the concept of a graph class to the weighted case by requiring that all level graphs belong to the class. We examine some types of monotonicity of graph classes, such as sandwich monotonicity, to construct edge elimination schemes of edge-weighted graphs. This leads to linear-time recognition algorithms of weighted graphs for which all level graphs are split, threshold, or chain graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrade, D.V., Boros, E., Gurvich, V.: Not complementary connected and not CIS \(d\)-graphs form weakly monotone families. Discrete Math. 310(5), 1089–1096 (2010). https://doi.org/10.1016/j.disc.2009.11.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakonyi, M., Constantinescu, T.: Inheritance principles for chordal graphs. Linear Algebra Appl. 148, 125–143 (1991). https://doi.org/10.1016/0024-3795(91)90090-J

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslov. Math. J. 47(4), 577–583 (1997). https://doi.org/10.1023/A:1022806215452

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A., Sigayret, A., Sinoquet, C.: Maximal sub-triangulation in pre-processing phylogenetic data. Soft Comput. 10(5), 461–468 (2006). https://doi.org/10.1007/s00500-005-0507-7

    Article  MATH  Google Scholar 

  5. Boros, E., Gurvich, V.: Vertex-and edge-minimal and locally minimal graphs. Discrete Math. 309(12), 3853–3865 (2009). https://doi.org/10.1016/j.disc.2008.10.020

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  7. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Hammer, P.L., Johnson, E.L., Korte, B.H., Nemhauser, G.L. (eds.) Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 145–162. Elsevier (1977). https://doi.org/10.1016/S0167-5060(08)70731-3

  8. Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971). https://doi.org/10.1007/BF01584082

    Article  MathSciNet  MATH  Google Scholar 

  9. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a view through temporal separators. Theor. Comput. Sci. 806, 197–218 (2020). https://doi.org/10.1016/j.tcs.2019.03.031

    Article  MathSciNet  MATH  Google Scholar 

  10. Foldes, S., Hammer, P.L.: Split graphs. In: Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing. Louisiana State University, Baton Rouge, La., 1977, pp. 311–315. Congressus Numerantium, no. XIX (1977)

    Google Scholar 

  11. Forsyth, E., Katz, L.: A matrix approach to the analysis of sociometric data: preliminary report. Sociometry 9(4), 340–347 (1946). https://doi.org/10.2307/2785498

    Article  Google Scholar 

  12. Fortin, D.: Robinsonian matrices: recognition challenges. J. Classif. 34(2), 191–222 (2017). https://doi.org/10.1007/s00357-017-9230-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulkerson, D.R., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965). https://doi.org/10.2140/pjm.1965.15.835

    Article  MathSciNet  MATH  Google Scholar 

  14. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981). https://doi.org/10.1007/BF02579333

    Article  MathSciNet  MATH  Google Scholar 

  15. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math. 157(12), 2659–2669 (2009). https://doi.org/10.1016/j.dam.2008.08.010

    Article  MathSciNet  MATH  Google Scholar 

  17. Heggernes, P., Mancini, F., Papadopoulos, C., Sritharan, R.: Strongly chordal and chordal bipartite graphs are sandwich monotone. J. Comb. Optim. 22(3), 438–456 (2011). https://doi.org/10.1007/s10878-010-9322-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Heggernes, P., Papadopoulos, C.: Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 406–416. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8_40

    Chapter  MATH  Google Scholar 

  19. Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci. 410(1), 1–15 (2009). https://doi.org/10.1016/j.tcs.2008.07.020

    Article  MathSciNet  MATH  Google Scholar 

  20. Huson, D.H., Nettles, S., Warnow, T.J.: Obtaining highly accurate topology estimates of evolutionary trees from very short sequences. In: Istrail, S., Pevzner, P.A., Waterman, M.S. (eds.) Proceedings of the Third Annual International Conference on Research in Computational Molecular Biology, RECOMB 1999, Lyon, France, April 11–14, 1999, pp. 198–207. ACM (1999). https://doi.org/10.1145/299432.299484

  21. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms Art. 40 4(4), 20 (2008). https://doi.org/10.1145/1383369.1383371

  22. Kearney, P.E., Hayward, R.B., Meijer, H.: Inferring evolutionary trees from ordinal data. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 418–426. ACM, New York (1997)

    Google Scholar 

  23. Khodaverdian, A., Weitz, B., Wu, J., Yosef, N.: Steiner network problems on temporal graphs. arXiv preprint arXiv:1609.04918 (2016)

  24. Kloks, T., Kratsch, D.: Treewidth of chordal bipartite graphs. J. Algorithms 19(2), 266–281 (1995). https://doi.org/10.1006/jagm.1995.1037

    Article  MathSciNet  MATH  Google Scholar 

  25. Laurent, M., Seminaroti, M.: Similarity-first search: a new algorithm with application to Robinsonian matrix recognition. SIAM J. Discrete Math. 31(3), 1765–1800 (2017). https://doi.org/10.1137/16M1056791

    Article  MathSciNet  MATH  Google Scholar 

  26. Laurent, M., Seminaroti, M., Tanigawa, S.i.: A structural characterization for certifying Robinsonian matrices. Electron. J. Combin. Paper 2.21 24(2), 22 (2017). https://doi.org/10.37236/6701

  27. Laurent, M., Tanigawa, S.: Perfect elimination orderings for symmetric matrices. Optimization Letters 14(2), 339–353 (2017). https://doi.org/10.1007/s11590-017-1213-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. ASA Data Sci. J. 3(2), 70–91 (2010). https://doi.org/10.1002/sam.10071

  29. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Comput. Math. Appl. 25(7), 15–25 (1993). https://doi.org/10.1016/0898-1221(93)90308-I

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995)

    Google Scholar 

  31. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_57

    Chapter  Google Scholar 

  32. Préa, P., Fortin, D.: An optimal algorithm to recognize robinsonian dissimilarities. J. Classif. 31(3), 351–385 (2014). https://doi.org/10.1007/s00357-014-9150-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory: Proceedings of the Second Ann Arbor Graph Theory Conference, pp. 139–146. Academic Press (1969)

    Google Scholar 

  34. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597–609 (1970). https://doi.org/10.1016/0022-247X(70)90282-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

    Article  MathSciNet  MATH  Google Scholar 

  36. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004). https://doi.org/10.1016/S0166-218X(03)00448-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Spinrad, J., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete Appl. Math. 59(2), 181–191 (1995). https://doi.org/10.1016/0166-218X(93)E0161-Q

    Article  MathSciNet  MATH  Google Scholar 

  38. Sritharan, R.: Graph modification problem for some classes of graphs. J. Discrete Algorithms 38(41), 32–37 (2016). https://doi.org/10.1016/j.jda.2016.06.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Tardos, G.: Extremal theory of vertex or edge ordered graphs. In: Surveys in Combinatorics 2019. London Mathematical Society Lecture Note Series, vol. 456, pp. 221–236. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108649094.008

  40. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  41. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981). https://doi.org/10.1137/0602010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ulrik Brandes, Caroline Brosse, Christophe Crespelle, and Petr Golovach for their valuable discussions.

This research was funded in part by German Academic Exchange Service and the Slovenian Research Agency (BI-DE/17-19-18 and BI-DE/19-20-007), and by the Slovenian Research Agency (I0-0035, research programs P1-0285, P1-0383, P1-0404, research projects J1-1692, J1-9110, J1-9187, N1-0102, and N1-0160, and a Young Researchers Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Scheffler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beisegel, J. et al. (2020). Edge Elimination and Weighted Graph Classes. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics