Abstract
Edge-weighted graphs play an important role in the theory of Robinsonian matrices and similarity theory, particularly via the concept of level graphs, that is, graphs obtained from an edge-weighted graph by removing all sufficiently light edges. This naturally leads to a generalization of the concept of a graph class to the weighted case by requiring that all level graphs belong to the class. We examine some types of monotonicity of graph classes, such as sandwich monotonicity, to construct edge elimination schemes of edge-weighted graphs. This leads to linear-time recognition algorithms of weighted graphs for which all level graphs are split, threshold, or chain graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrade, D.V., Boros, E., Gurvich, V.: Not complementary connected and not CIS \(d\)-graphs form weakly monotone families. Discrete Math. 310(5), 1089–1096 (2010). https://doi.org/10.1016/j.disc.2009.11.006
Bakonyi, M., Constantinescu, T.: Inheritance principles for chordal graphs. Linear Algebra Appl. 148, 125–143 (1991). https://doi.org/10.1016/0024-3795(91)90090-J
Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslov. Math. J. 47(4), 577–583 (1997). https://doi.org/10.1023/A:1022806215452
Berry, A., Sigayret, A., Sinoquet, C.: Maximal sub-triangulation in pre-processing phylogenetic data. Soft Comput. 10(5), 461–468 (2006). https://doi.org/10.1007/s00500-005-0507-7
Boros, E., Gurvich, V.: Vertex-and edge-minimal and locally minimal graphs. Discrete Math. 309(12), 3853–3865 (2009). https://doi.org/10.1016/j.disc.2008.10.020
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)
Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Hammer, P.L., Johnson, E.L., Korte, B.H., Nemhauser, G.L. (eds.) Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 145–162. Elsevier (1977). https://doi.org/10.1016/S0167-5060(08)70731-3
Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971). https://doi.org/10.1007/BF01584082
Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a view through temporal separators. Theor. Comput. Sci. 806, 197–218 (2020). https://doi.org/10.1016/j.tcs.2019.03.031
Foldes, S., Hammer, P.L.: Split graphs. In: Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing. Louisiana State University, Baton Rouge, La., 1977, pp. 311–315. Congressus Numerantium, no. XIX (1977)
Forsyth, E., Katz, L.: A matrix approach to the analysis of sociometric data: preliminary report. Sociometry 9(4), 340–347 (1946). https://doi.org/10.2307/2785498
Fortin, D.: Robinsonian matrices: recognition challenges. J. Classif. 34(2), 191–222 (2017). https://doi.org/10.1007/s00357-017-9230-1
Fulkerson, D.R., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965). https://doi.org/10.2140/pjm.1965.15.835
Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981). https://doi.org/10.1007/BF02579333
Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)
Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math. 157(12), 2659–2669 (2009). https://doi.org/10.1016/j.dam.2008.08.010
Heggernes, P., Mancini, F., Papadopoulos, C., Sritharan, R.: Strongly chordal and chordal bipartite graphs are sandwich monotone. J. Comb. Optim. 22(3), 438–456 (2011). https://doi.org/10.1007/s10878-010-9322-x
Heggernes, P., Papadopoulos, C.: Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 406–416. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8_40
Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci. 410(1), 1–15 (2009). https://doi.org/10.1016/j.tcs.2008.07.020
Huson, D.H., Nettles, S., Warnow, T.J.: Obtaining highly accurate topology estimates of evolutionary trees from very short sequences. In: Istrail, S., Pevzner, P.A., Waterman, M.S. (eds.) Proceedings of the Third Annual International Conference on Research in Computational Molecular Biology, RECOMB 1999, Lyon, France, April 11–14, 1999, pp. 198–207. ACM (1999). https://doi.org/10.1145/299432.299484
Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms Art. 40 4(4), 20 (2008). https://doi.org/10.1145/1383369.1383371
Kearney, P.E., Hayward, R.B., Meijer, H.: Inferring evolutionary trees from ordinal data. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 418–426. ACM, New York (1997)
Khodaverdian, A., Weitz, B., Wu, J., Yosef, N.: Steiner network problems on temporal graphs. arXiv preprint arXiv:1609.04918 (2016)
Kloks, T., Kratsch, D.: Treewidth of chordal bipartite graphs. J. Algorithms 19(2), 266–281 (1995). https://doi.org/10.1006/jagm.1995.1037
Laurent, M., Seminaroti, M.: Similarity-first search: a new algorithm with application to Robinsonian matrix recognition. SIAM J. Discrete Math. 31(3), 1765–1800 (2017). https://doi.org/10.1137/16M1056791
Laurent, M., Seminaroti, M., Tanigawa, S.i.: A structural characterization for certifying Robinsonian matrices. Electron. J. Combin. Paper 2.21 24(2), 22 (2017). https://doi.org/10.37236/6701
Laurent, M., Tanigawa, S.: Perfect elimination orderings for symmetric matrices. Optimization Letters 14(2), 339–353 (2017). https://doi.org/10.1007/s11590-017-1213-y
Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. ASA Data Sci. J. 3(2), 70–91 (2010). https://doi.org/10.1002/sam.10071
Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Comput. Math. Appl. 25(7), 15–25 (1993). https://doi.org/10.1016/0898-1221(93)90308-I
Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995)
Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_57
Préa, P., Fortin, D.: An optimal algorithm to recognize robinsonian dissimilarities. J. Classif. 31(3), 351–385 (2014). https://doi.org/10.1007/s00357-014-9150-2
Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory: Proceedings of the Second Ann Arbor Graph Theory Conference, pp. 139–146. Academic Press (1969)
Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597–609 (1970). https://doi.org/10.1016/0022-247X(70)90282-9
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021
Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004). https://doi.org/10.1016/S0166-218X(03)00448-7
Spinrad, J., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete Appl. Math. 59(2), 181–191 (1995). https://doi.org/10.1016/0166-218X(93)E0161-Q
Sritharan, R.: Graph modification problem for some classes of graphs. J. Discrete Algorithms 38(41), 32–37 (2016). https://doi.org/10.1016/j.jda.2016.06.003
Tardos, G.: Extremal theory of vertex or edge ordered graphs. In: Surveys in Combinatorics 2019. London Mathematical Society Lecture Note Series, vol. 456, pp. 221–236. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108649094.008
West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981). https://doi.org/10.1137/0602010
Acknowledgements
The authors would like to thank Ulrik Brandes, Caroline Brosse, Christophe Crespelle, and Petr Golovach for their valuable discussions.
This research was funded in part by German Academic Exchange Service and the Slovenian Research Agency (BI-DE/17-19-18 and BI-DE/19-20-007), and by the Slovenian Research Agency (I0-0035, research programs P1-0285, P1-0383, P1-0404, research projects J1-1692, J1-9110, J1-9187, N1-0102, and N1-0160, and a Young Researchers Grant).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Beisegel, J. et al. (2020). Edge Elimination and Weighted Graph Classes. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-60440-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60439-4
Online ISBN: 978-3-030-60440-0
eBook Packages: Computer ScienceComputer Science (R0)