Automatic C-Plane Detection in Pelvic Floor Transperineal Volumetric Ultrasound | SpringerLink
Skip to main content

Automatic C-Plane Detection in Pelvic Floor Transperineal Volumetric Ultrasound

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Transperineal volumetric ultrasound (US) imaging has become routine practice for diagnosing pelvic floor disease (PFD). Hereto, clinical guidelines stipulate to make measurements in an anatomically defined 2D plane within a 3D volume, the so-called C-plane. This task is currently performed manually in clinical practice, which is labour-intensive and requires expert knowledge of pelvic floor anatomy, as no computer-aided C-plane method exists. To automate this process, we propose a novel, guideline-driven approach for automatic detection of the C-plane. The method uses a convolutional neural network (CNN) to identify extreme coordinates of the symphysis pubis and levator ani muscle (which define the C-plane) directly via landmark regression. The C-plane is identified in a postprocessing step. When evaluated on 100 US volumes, our best performing method (multi-task regression with UNet) achieved a mean error of 6.05 mm and 4.81\(^{\circ }\) and took 20 s. Two experts blindly evaluated the quality of the automatically detected planes and manually defined the (gold standard) C-plane in terms of their clinical diagnostic quality. We show that the proposed method performs comparably to the manual definition. The automatic method reduces the average time to detect the C-plane by 100 s and reduces the need for high-level expertise in PFD US assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AIUM/IUGA practice parameter for the performance of urogynecological ultrasound examinations: developed in collaboration with the ACR, the AUGS, the AUA, and the SRU. J. Ultrasound Med. 38(4), 851–864 (2019)

    Google Scholar 

  2. Bonmati, E., et al.: Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network. J. Med. Imaging 5, 12 (2017)

    Google Scholar 

  3. Cattani, L., et al.: Exo-anal imaging of the anal sphincter: a comparison between introital and transperineal image acquisition. Int. Urogynecology J. 31(6), 1107–1113 (2019). https://doi.org/10.1007/s00192-019-04122-5

    Article  Google Scholar 

  4. Chykeyuk, K., Yaqub, M., Alison Noble, J.: Class-specific regression random forest for accurate extraction of standard planes from 3D echocardiography. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds.) MCV 2013. LNCS, vol. 8331, pp. 53–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05530-5_6

    Chapter  Google Scholar 

  5. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. CoRR, abs/1709.03485 (2017)

    Google Scholar 

  6. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR, abs/1809.10483 (2018)

    Google Scholar 

  7. Lammers, K., Fütterer, J.J., Inthout, J., Prokop, M., Vierhout, M.E., Kluivers, K.B.: Correlating signs and symptoms with pubovisceral muscle avulsions on magnetic resonance imaging. Am. J. Obstet. Gynecol. 208(2), 148.e1–148.e7 (2013)

    Article  Google Scholar 

  8. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task. CoRR, abs/1707.01992 (2017)

    Google Scholar 

  9. Li, Y., et al.: Standard plane detection in 3D fetal ultrasound using an iterative transformation network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 392–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_45

    Chapter  Google Scholar 

  10. Lu, X., Georgescu, B., Zheng, Y., Otsuki, J., Comaniciu, D.: AutoMPR: automatic detection of standard planes in 3D echocardiography, pp. 1279–1282, June 2008

    Google Scholar 

  11. Whiteside, J.L., Muffly, T.: Chapter 26 overview of pelvic floor disorders: epidemiology, diagnosis, and treatment. In: Goldman, M.B., Troisi, R., Rexrode, K.M. (eds.) Women and Health, 2nd edn., pp. 389–403. Academic Press, Cambridge (2013)

    Chapter  Google Scholar 

  12. Williams, H., et al.: 3D convolutional neural network for segmentation of the urethra in volumetric ultrasound of the pelvic floor. In: 2019 IEEE International Ultrasonics Symposium (IUS), pp. 1473–1476 (2019)

    Google Scholar 

  13. Xuan, Y., Friedman, T., Dietz, H.: Does levator ani hiatal area configuration affect pelvic organ prolapse? Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 54(1), 124–127 (2019)

    Article  Google Scholar 

  14. Yaqub, M., Kopuri, A., Rueda, S., Sullivan, P.B., McCormick, K., Noble, J.A.: A constrained regression forests solution to 3D fetal ultrasound plane localization for longitudinal analysis of brain growth and maturation. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 109–116. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_14

    Chapter  Google Scholar 

  15. Zhu, P., Li, Z.: Guideline-based machine learning for standard plane extraction in 3D cardiac ultrasound. In: Müller, H., et al. (eds.) MCV/BAMBI -2016. LNCS, vol. 10081, pp. 137–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61188-4_13

    Chapter  Google Scholar 

  16. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the P6000 GPU and GE Healthcare Women’s Health Ultrasound (Zipf, Austria) for their ongoing research and data support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena Williams , Laura Cattani , Carole Sudre , Tom Vercauteren , Jan Deprest or Jan D’hooge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Williams, H. et al. (2020). Automatic C-Plane Detection in Pelvic Floor Transperineal Volumetric Ultrasound. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics