Routh – Hurwitz Stability of a Polynomial Matrix Family. Real Perturbations | SpringerLink
Skip to main content

Routh – Hurwitz Stability of a Polynomial Matrix Family. Real Perturbations

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Abstract

The problem of Routh–Hurwitz stability of a polynomial matrix family is considered as that of discovering the structure of the stability domain in the parameter space. Algorithms for finding the spectral abscissa and the distance to instability from any internal point of the stability domain to its boundary for the case of real perturbations are proposed. The treatment is performed in the ideology of analytical algorithm for elimination of variables and localization of zeros of algebraic systems. Some examples are given.

Supported by RFBR according to the project No 17-29-04288.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann, J., Muench, R.: Robustness analysis in a plant parameter plane. IFAC Proc. vol. 20(5), part 8, 205–209 (1987)

    Google Scholar 

  2. Bobylev, N.A., Bulatov, A.V.: A bound on the real stability radius of continuoustime linear infinite-dimensional systems. Comput. Math. Model. 12(4), 359–368 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bobylev, N.A., Bulatov, A.V., Diamond, P.H.: Estimates of the real structured radius of stability of linear dynamic systems. Autom. Remote Control 62, 505–512 (2001)

    Article  MathSciNet  Google Scholar 

  4. Emiris, I., Mourrain, B., Tsigaridas, E.: Separation bounds for polynomial systems. J. Symb. Comput. 101, 128–151 (2020)

    Article  MathSciNet  Google Scholar 

  5. Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435, 3189–3205 (2011)

    Article  MathSciNet  Google Scholar 

  6. Guglielmi, N., Gürbüzbalaban, M., Mitchell, T., Overton, M.: Approximating the real structured stability radius with Frobenius norm bounded perturbations. SIAM J. Matrix Anal. Appl. 38(4), 1323–1353 (2017)

    Article  MathSciNet  Google Scholar 

  7. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J. Matrix Anal. Appl. 34, 40–66 (2013)

    Article  MathSciNet  Google Scholar 

  8. Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer. Anal. 35(3), 1401–1425 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7(1), 1–10 (1986)

    Article  MathSciNet  Google Scholar 

  10. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: ModellingState Space analysis. Stability and Robustness. Springer-Verlag, Berlin Heidelberg (2005)

    Book  Google Scholar 

  11. Kalinina, E., Smol’kin, Y., Uteshev, A.: Robust schur stability of a polynomial matrix family. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 262–279. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_18

    Chapter  Google Scholar 

  12. Kalinina, E.A., Smol’kin, Yu.A. Uteshev, A.Yu.: Stability and distance to instability for polynomial matrix families. complex perturbations. Linear Multilinear Algebra (2020) https://doi.org/10.1080/03081087.2020.1759500

  13. Kalinina, E.A., Uteshev, A.Y.: Determination of the number of roots of a polynomial lying in a given algebraic domain. Linear Algebra Appl. 185, 61–81 (1993)

    Article  MathSciNet  Google Scholar 

  14. Katewa, V., Pasqualetti, F.: On the real stability radius of sparse systems. Automatica 113, 108685 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kronecker, L.: Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen. Werke. Bd. 2, pp. 113–192. Teubner, Leipzig (1897)

    Google Scholar 

  16. Lazard, D., McCallum, S.: Iterated discriminants. J. Symb. Comput. 44, 1176–1193 (2009)

    Article  MathSciNet  Google Scholar 

  17. Qiu, L., Davison, E.J.: The stability robustness determination of state space models with real unstructured perturbations. Math. Control Sig. Syst. 4(3), 247–267 (1991)

    Article  MathSciNet  Google Scholar 

  18. Rem, S., Kabamba, P.T., Bemstein, D.S.: Guardian map approach to robust stability of linear systems with constant real parameter uncertainty. IEEE Trans. Autom. Control 39(1), 162–164 (1994)

    Article  MathSciNet  Google Scholar 

  19. Routh, E.J.: A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Macmillan and Co., London (1877)

    Google Scholar 

  20. Savov, S., Popchev, I.: Robust stability analysis for a perturbed single-area power system model. Cybern. Inf. Technol. 15(4), 42–49 (2015)

    MathSciNet  Google Scholar 

  21. Uteshev, A.Yu., Goncharova, M.V.: Metric problems for algebraic manifolds: analytical approach. In: Constructive Nonsmooth Analysis and Related Topics – CNSA 2017 Proc., 7974027 (2017)

    Google Scholar 

  22. Uteshev, A.Yu., Goncharova, M.V.: Approximation of the distance from a point to an algebraic manifold. In: Proceeding of 8th International Conference on Pattern Recognition Applications and Methods. vol. 1, pp. 715–720 (2019)

    Google Scholar 

  23. Uteshev, A.Y., Shulyak, S.G.: Hermite’s method of separation of solutions of systems of algebraic equations and its applications. Linear Algebra Appl. 177, 49–88 (1992)

    Article  MathSciNet  Google Scholar 

  24. Van Loan, C.F.: How near is a stable matrix to an unstable matrix? In: Datta, B.N. et al. (eds.) Linear Algebra and its Role in Systems Theory 1984, Contemporary Math., vol. 47, pp. 465–478. Amer. Math. Soc., Providence, Rhode Island (1985) https://doi.org/10.1090/conm/047

  25. Weyl, H.: Classical Groups: Their Invariants and Representations. Princeton Univ. Press, Princeton, New Jork (1953)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof Evgenii Vorozhtzov and to the anonimous referees for valuable suggestions that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta A. Kalinina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y. (2020). Routh – Hurwitz Stability of a Polynomial Matrix Family. Real Perturbations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics