Abstract
The problem of Routh–Hurwitz stability of a polynomial matrix family is considered as that of discovering the structure of the stability domain in the parameter space. Algorithms for finding the spectral abscissa and the distance to instability from any internal point of the stability domain to its boundary for the case of real perturbations are proposed. The treatment is performed in the ideology of analytical algorithm for elimination of variables and localization of zeros of algebraic systems. Some examples are given.
Supported by RFBR according to the project No 17-29-04288.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackermann, J., Muench, R.: Robustness analysis in a plant parameter plane. IFAC Proc. vol. 20(5), part 8, 205–209 (1987)
Bobylev, N.A., Bulatov, A.V.: A bound on the real stability radius of continuoustime linear infinite-dimensional systems. Comput. Math. Model. 12(4), 359–368 (2001)
Bobylev, N.A., Bulatov, A.V., Diamond, P.H.: Estimates of the real structured radius of stability of linear dynamic systems. Autom. Remote Control 62, 505–512 (2001)
Emiris, I., Mourrain, B., Tsigaridas, E.: Separation bounds for polynomial systems. J. Symb. Comput. 101, 128–151 (2020)
Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435, 3189–3205 (2011)
Guglielmi, N., Gürbüzbalaban, M., Mitchell, T., Overton, M.: Approximating the real structured stability radius with Frobenius norm bounded perturbations. SIAM J. Matrix Anal. Appl. 38(4), 1323–1353 (2017)
Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J. Matrix Anal. Appl. 34, 40–66 (2013)
Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer. Anal. 35(3), 1401–1425 (2014)
Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7(1), 1–10 (1986)
Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: ModellingState Space analysis. Stability and Robustness. Springer-Verlag, Berlin Heidelberg (2005)
Kalinina, E., Smol’kin, Y., Uteshev, A.: Robust schur stability of a polynomial matrix family. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 262–279. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_18
Kalinina, E.A., Smol’kin, Yu.A. Uteshev, A.Yu.: Stability and distance to instability for polynomial matrix families. complex perturbations. Linear Multilinear Algebra (2020) https://doi.org/10.1080/03081087.2020.1759500
Kalinina, E.A., Uteshev, A.Y.: Determination of the number of roots of a polynomial lying in a given algebraic domain. Linear Algebra Appl. 185, 61–81 (1993)
Katewa, V., Pasqualetti, F.: On the real stability radius of sparse systems. Automatica 113, 108685 (2020)
Kronecker, L.: Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen. Werke. Bd. 2, pp. 113–192. Teubner, Leipzig (1897)
Lazard, D., McCallum, S.: Iterated discriminants. J. Symb. Comput. 44, 1176–1193 (2009)
Qiu, L., Davison, E.J.: The stability robustness determination of state space models with real unstructured perturbations. Math. Control Sig. Syst. 4(3), 247–267 (1991)
Rem, S., Kabamba, P.T., Bemstein, D.S.: Guardian map approach to robust stability of linear systems with constant real parameter uncertainty. IEEE Trans. Autom. Control 39(1), 162–164 (1994)
Routh, E.J.: A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Macmillan and Co., London (1877)
Savov, S., Popchev, I.: Robust stability analysis for a perturbed single-area power system model. Cybern. Inf. Technol. 15(4), 42–49 (2015)
Uteshev, A.Yu., Goncharova, M.V.: Metric problems for algebraic manifolds: analytical approach. In: Constructive Nonsmooth Analysis and Related Topics – CNSA 2017 Proc., 7974027 (2017)
Uteshev, A.Yu., Goncharova, M.V.: Approximation of the distance from a point to an algebraic manifold. In: Proceeding of 8th International Conference on Pattern Recognition Applications and Methods. vol. 1, pp. 715–720 (2019)
Uteshev, A.Y., Shulyak, S.G.: Hermite’s method of separation of solutions of systems of algebraic equations and its applications. Linear Algebra Appl. 177, 49–88 (1992)
Van Loan, C.F.: How near is a stable matrix to an unstable matrix? In: Datta, B.N. et al. (eds.) Linear Algebra and its Role in Systems Theory 1984, Contemporary Math., vol. 47, pp. 465–478. Amer. Math. Soc., Providence, Rhode Island (1985) https://doi.org/10.1090/conm/047
Weyl, H.: Classical Groups: Their Invariants and Representations. Princeton Univ. Press, Princeton, New Jork (1953)
Acknowledgments
The authors are grateful to Prof Evgenii Vorozhtzov and to the anonimous referees for valuable suggestions that helped to improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y. (2020). Routh – Hurwitz Stability of a Polynomial Matrix Family. Real Perturbations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-60026-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60025-9
Online ISBN: 978-3-030-60026-6
eBook Packages: Computer ScienceComputer Science (R0)