A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation | SpringerLink
Skip to main content

A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

  • 3984 Accesses

Abstract

Dice loss is the most widely used loss function in deep learning methods for unbalanced medical image segmentation. The main limitation of Dice loss is that it weighs different parts of the to-be-segmented region of interest (ROI) equally, which is inappropriate given that the fuzzy boundary is typically more challenging to segment than central parts. A recently-proposed boundary loss weighs different parts of an ROI according to their distances to the ROI’s boundary, thus providing complementary information to Dice loss. However, boundary loss can not be directly applied to patch-based 3D convolutional neural networks (CNNs), significantly limiting its utility. In this paper, we proposed and validated a two-stage 3D+2D framework making use of 3D CNN for spatial information extraction and also boundary loss to complement the typically-used generalized Dice loss, for segmenting stroke lesions from magnetic resonance (MR) images. A 3D patch-based fully convolutional network was firstly used to learn local spatial features. And then the to-be-segmented MR image and the probability map predicted from the trained 3D model were sliced and fed into a 2D network with a joint loss combining boundary loss and generalized Dice loss. We evaluated the proposed method on a publicly-available dataset consisting of 229 T1-weighted MR images. The proposed approach yielded an average Dice score of 56.25% and an average Hausdorff distance of 27.14 mm, performing much better than existing state-of-the-art stroke lesion segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, W., Onuma, O., Owolabi, M., et al.: Stroke: a global response is needed. Bull. World Health Organ. 94(9), 634 (2016)

    Article  Google Scholar 

  2. Pinto, A., Mckinley, R., Alves, V., et al.: Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front. Neurol. 9, 1060 (2018)

    Article  Google Scholar 

  3. Cramer, S.C., Wolf, S.L., Adams Jr., H.P., et al.: Stroke recovery and rehabilitation research: issues, opportunities, and the National Institutes of Health StrokeNet. Stroke 48(3), 813–819 (2017)

    Article  Google Scholar 

  4. Burke Quinlan, E., Dodakian, L., See, J., et al.: Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neuro. 77(1), 132–145 (2015)

    Article  Google Scholar 

  5. Crinion, J., Holland, A.L., Copland, D.A., Thompson, C.K., Hillis, A.E.: Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. Neuroimage 73, 208–214 (2013)

    Article  Google Scholar 

  6. Tipirneni, S.A., Christensen, S., Straka, M., et al.: Prediction of final infarct volume on subacute MRI by quantifying cerebral edema in ischemic stroke. J. Cereb. Blood Flow Metab. 37(8), 3077–3084 (2017)

    Article  Google Scholar 

  7. Ito, K.L., Kim, H., Liew, S.L.: A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data. Hum. Brain Mapp. 40(16), 4669–4685 (2019)

    Article  Google Scholar 

  8. Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. NeuroImage 41(4), 1253–1266 (2008)

    Article  Google Scholar 

  9. Pustina, D., Coslett, H.B., Turkeltaub, P.E., Tustison, N., Schwartz, M.F., Avants, B.: Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis. Hum. Brain Mapp. 37(4), 1405–1421 (2016)

    Article  Google Scholar 

  10. De Haan, B., Clas, P., Juenger, H., Wilke, M., Karnath, H.O.: Fast semi-automated lesion demarcation in stroke. NeuroImage Clin. 9, 69–74 (2015)

    Article  Google Scholar 

  11. Griffis, J.C., Allendorfer, J.B., Szaflarski, J.P.: Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J. Neurosci. Methods 257, 97–108 (2016)

    Article  Google Scholar 

  12. Qi, K., et al.: X-Net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 247–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_28

    Chapter  Google Scholar 

  13. Zhou, Y., Huang, W., Dong, P., et al.: D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation. IEEE/ACM Trans. Comput. Biol. Bioinform (2019)

    Google Scholar 

  14. Xue, Y., Farhat, F.G., Boukrina, O., et al.: A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. NeuroImage Clin. 25, 102118 (2020)

    Article  Google Scholar 

  15. Yang, H., et al.: CLCI-Net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30

    Chapter  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Wu, J., Zhang, Y., Tang, X.: A multi-atlas guided 3D fully convolutional network for MRI-based subcortical segmentation. In: ISBI, pp. 705–708. IEEE (2019)

    Google Scholar 

  18. Maier, O., Menze, B.H., von der Gablentz, J., Häni, L., et al.: ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

  19. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  20. Zhang, Y., Wu, J., Liu, Y., Chen, Y., Wu, X., Tang, X.: MI-UNet: multi-inputs UNet incorporating brain parcellation for stroke lesion segmentation from T1-weighted magnetic resonance images. IEEE J. Biomed. Health Inform. (2020)

    Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

    Google Scholar 

  22. Kervadec, H., Bouchtiba, J., Desrosiers, C., et al.: Boundary loss for highly unbalanced segmentation. In: MIDL, pp. 285–296 (2019)

    Google Scholar 

  23. Kamnitsas, K., Ledig, C., Newcombe, V.F., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  24. Dolz, J., Desrosiers, C., Ayed, I.B.: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. NeuroImage 170, 456–470 (2018)

    Article  Google Scholar 

  25. Lian, C., Zhang, J., Liu, M., et al.: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Med. Image Anal. 46, 106–117 (2018)

    Article  Google Scholar 

  26. Liew, S.L., Anglin, J.M., Banks, N.W., et al.: A large, open-source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5, 180011 (2018)

    Article  Google Scholar 

  27. Li, C., Sun, H., Liu, Z., Wang, M., Zheng, H., Wang, S.: Learning cross-modal deep representations for multi-modal MR image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_7

    Chapter  Google Scholar 

  28. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  29. Wu, J., Zhang, Y., Tang, X.: A joint 3D+2D fully convolutional framework for subcortical segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 301–309. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_34

    Chapter  Google Scholar 

Download references

Acknowledgement

This study was supported by the Shenzhen Basic Research Program (JCYJ20190809120205578), the National Key R&D Program of China (2017YFC0112404) and the National Natural Science Foundation of China (81501546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Wu, J., Liu, Y., Chen, Y., Wu, E.X., Tang, X. (2020). A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics