Abstract
In this work, a unified representation of all the time-varying dynamics is accomplished with a Lagrangian framework for analyzing Fisher-Rao regularized dynamical optimal mass transport (OMT) derived flows. While formally equivalent to the Eulerian based Schrödinger bridge OMT regularization scheme, the Fisher-Rao approach allows a simple and interpretable methodology for studying the flows of interest in the present work. The advantage of the proposed Lagrangian technique is that the time-varying particle trajectories and attributes are displayed in a single visualization. This provides a natural capability to identify and distinguish flows under different conditions. The Lagrangian analysis applied to the glymphatic system (brain waste removal pathway associated with Alzheimer’s Disease) successfully captures known flows and distinguishes between flow patterns under two different anesthetics, providing deeper insights into altered states of waste drainage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Math. 84, 375–393 (2000)
Benveniste, H., et al.: Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiol.: J. Am. Soc. Anesthesiol. 127(6), 976–988 (2017)
Buttazzo, G., Jimenez, C., Oudet, E.: An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48(3), 1961–1976 (2009)
Chen, Y., Georgiou, T.T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016)
Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Unbalanced optimal transport: dynamic and Kantorovich formulations. J. Funct. Anal. 274(11), 3090–3123 (2018)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)
Elkin, R., et al.: GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 844–852. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_95
Elkin, R., et al.: Optimal mass transport kinetic modeling for head and neck DCE-MRI: initial analysis. Magn. Reson. Med. 82(6), 2314–2325 (2019)
Feydy, J., Charlier, B., Vialard, F.-X., Peyré, G.: Optimal transport for diffeomorphic registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 291–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_34
Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)
Gerber, S., Niethammer, M., Styner, M., Aylward, S.: Exploratory population analysis with unbalanced optimal transport. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 464–472. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_53
Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004)
Iliff, J.J., et al.: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Investig. 123(3), 1299–1309 (2013)
Iliff, J.J., et al.: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid \(\beta \). Sci. Transl. Med. 4(147), 147ra111 (2012)
Jiang, Q., et al.: Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab. 37(4), 1326–1337 (2017)
Koundal, S., et al.: Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 10(1), 1–18 (2020)
Lee, H., et al.: The effect of body posture on brain glymphatic transport. J. Neurosci. 35(31), 11034–11044 (2015)
Li, W., Yin, P., Osher, S.: Computations of optimal transport distance with fisher information regularization. J. Sci. Comput. 75(3), 1581–1595 (2018)
Liero, M., Mielke, A., Savaré, G.: Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48(4), 2869–2911 (2016)
Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Communications in Partial Differential Equations (2001)
Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7(1), 212–238 (2014)
Peng, W., et al.: Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93, 215–225 (2016)
Ratner, V., et al.: Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neuroimage 152, 530–537 (2017)
Shokri-Kojori, E., et al.: \(\beta \)-amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. 115(17), 4483–4488 (2018)
Steklova, K., Haber, E.: Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D. Comput. Geosci. 21(1), 75–94 (2017)
Villani, C.: Topics in Optimal Transportation No. 58. American Mathematical Society, Providence (2003)
Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-71050-9
Xie, L., et al.: Sleep drives metabolite clearance from the adult brain. Science 342(6156), 373–377 (2013)
Acknowledgements
This study was supported by AFOSR grants (FA9550-17-1-0435, FA9550-20-1-0029), a grant from National Institutes of Health (R01-AG048769, RF1-AG053991), MSK Cancer Center Support Grant/Core Grant (P30 CA008748), and a grant from Breast Cancer Research Foundation (BCRF-17-193).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Elkin, R., Nadeem, S., Lee, H., Benveniste, H., Tannenbaum, A. (2020). Fisher-Rao Regularized Transport Analysis of the Glymphatic System and Waste Drainage. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-59728-3_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59727-6
Online ISBN: 978-3-030-59728-3
eBook Packages: Computer ScienceComputer Science (R0)