Abstract
PURPOSE: Incomplete tumor resections leads to the presence of cancer cells on the resection margins demanding subsequent revision surgery and poor outcomes for patients. Intraoperative evaluations of the tissue pathology, including the surgical margins, can help decrease the burden of repeat surgeries on the patients and healthcare systems. In this study, we propose adapting multi instance learning (MIL) for prospective and intraoperative basal cell carcinoma (BCC) detection in surgical margins using mass spectrometry. METHODS: Resected specimens were collected and inspected by a pathologist and burnt with iKnife. Retrospective training data was collected with a standard cautery tip and included 63 BCC and 127 normal burns. Prospective data was collected for testing with both the standard and a fine tip cautery. This included 130 (66 BCC and 64 normal) and 99 (32 BCC and 67 normal) burns, respectively. An attention-based MIL model was adapted and applied to this dataset. RESULTS: Our models were able to predict BCC at surgical margins with AUC as high as 91%. The models were robust to changes in cautery tip but their performance decreased slightly. The models were also tested intraoperatively and achieved an accuracy of 94%. CONCLUSION: This is the first study that applies the concept of MIL for tissue characterization in perioperative and intraoperative REIMS data.
A. Jamzad, A. Sedghi and A.M.L. Santilli—Joint first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems 15, pp. 577–584. MIT Press (2003)
Balog, J., et al.: Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5(194), 194 (2013)
Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)
Fisher, S.L., Yasui, Y., Dabbs, K., Winget, M.D.: Re-excision and survival following breast conserving surgery in early stage breast cancer patients: a population-based study. BMC Health Serv. Res. 18, 94 (2018)
Genangeli, M., Heeren, R., Porta Siegel, T.: Tissue classification by rapid evaporative ionization mass spectrometry (REIMS): comparison between a diathermic knife and CO2 laser sampling on classification performance. Anal. Bioanal. Chem. 411, 7943–7955 (2019)
Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 2127–2136 (2018)
Kinross, J.M., et al.: iKnife: rapid evaporative ionization mass spectrometry (REIMS) enables real-time chemical analysis of the mucosal lipidome for diagnostic and prognostic use in colorectal cancer. Cancer Res. 76(14 Suppl.), 3977 (2016)
Liu, G., Wu, J., Zhou, Z.H.: Key instance detection in multi-instance learning. In: Asian Conference on Machine Learning, vol. 25, pp. 253–268 (2012)
Marcus, D., et al.: Endometrial cancer: can the iknife diagnose endometrial cancer? Int. J. Gynecol. Cancer 29, A100–A101 (2019)
Moran, M.S., et al.: Society of surgical oncology-American society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J. Clin. Oncol. 32(14), 1507–1515 (2014)
Phelps, D.L., et al.: The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br. J. Cancer 118(10), 1349–1358 (2018)
St John, E.R., et al.: Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 19(59) (2017)
Strittmatter, N., Jones, E.A., Veselkov, K.A., Rebec, M., Bundy, J.G., Takats, Z.: Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Chem. Commun. 49, 6188–6190 (2013)
Verkouteren, J., Ramdas, K., Wakkee, M., Nijsten, T.: Epidemiology of basal cell carcinoma: scholarly review. Br. J. Dermatol. 177(2), 359–372 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jamzad, A. et al. (2020). Improved Resection Margins in Surgical Oncology Using Intraoperative Mass Spectrometry. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)