Flexible Bayesian Modelling for Nonlinear Image Registration | SpringerLink
Skip to main content

Flexible Bayesian Modelling for Nonlinear Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

We describe a diffeomorphic registration algorithm that allows groups of images to be accurately aligned to a common space, which we intend to incorporate into the SPM software. The idea is to perform inference in a probabilistic graphical model that accounts for variability in both shape and appearance. The resulting framework is general and entirely unsupervised. The model is evaluated at inter-subject registration of 3D human brain scans. Here, the main modeling assumption is that individual anatomies can be generated by deforming a latent ‘average’ brain. The method is agnostic to imaging modality and can be applied with no prior processing. We evaluate the algorithm using freely available, manually labelled datasets. In this validation we achieve state-of-the-art results, within reasonable runtimes, against previous state-of-the-art widely used, inter-subject registration algorithms. On the unprocessed dataset, the increase in overlap score is over 17%. These results demonstrate the benefits of using informative computational anatomy frameworks for nonlinear registration.

M. Brudfors and Y. Balbastre—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    nitrc.org/projects/ibsr, resource.loni.usc.edu/resources.

  2. 2.

    github.com/voxelmorph/voxelmorph.

  3. 3.

    brain-development.org, mrbrains18.isi.uu.nl, my.vanderbilt.edu/masi.

  4. 4.

    \((\text {TPR}_{\mathrm {MB}} - \text {TPR}_{\mathrm {Shoot}})/(\text {TPR}_{\mathrm {MB}} - \text {TPR}_{\mathrm {Affine}}) \times 100\%\).

References

  1. Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.-B., Heather, J.D., Frackowiak, R.S.: Spatial registration and normalization of images. Hum. Brain Mapp. 3(3), 165–189 (1995)

    Article  Google Scholar 

  2. Zöllei, L., Learned-Miller, E., Grimson, E., Wells, W.: Efficient population registration of 3D data. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 291–301. Springer, Heidelberg (2005). https://doi.org/10.1007/11569541_30

    Chapter  Google Scholar 

  3. Heckemann, R.A., et al.: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1), 221–227 (2010)

    Article  Google Scholar 

  4. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A.: Changes in grey matter induced by training. Nature 427(6972), 311–312 (2004)

    Article  Google Scholar 

  5. Fox, P.T.: Spatial normalization origins: objectives, applications, and alternatives. Hum. Brain Mapp. 3(3), 161–164 (1995)

    Article  Google Scholar 

  6. Csernansky, J.G., et al.: Hippocampal morphometry in schizophrenia by high dimensional brain mapping. PNAS 95(19), 11406–11411 (1998)

    Article  Google Scholar 

  7. Mourao-Miranda, J., et al.: Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol. Med. 42(5), 1037–1047 (2012)

    Article  Google Scholar 

  8. Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. NeuroImage 41(4), 1253–1266 (2008)

    Article  Google Scholar 

  9. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8(8), 665 (2011)

    Article  Google Scholar 

  10. Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Trans. Med. Imaging 16(6), 864–877 (1997)

    Article  Google Scholar 

  11. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  12. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)

    Article  Google Scholar 

  13. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  14. Andersson, J.L., Jenkinson, M., Smith, S., et al.: “Non-linear registration aka spatial normalisation FMRIB Technical report TR07JA2,” FMRIB Analysis Group of the University of Oxford (2007)

    Google Scholar 

  15. Bhatia, K.K., et al.: Groupwise combined segmentation and registration for atlas construction. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 532–540. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_65

    Chapter  Google Scholar 

  16. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  17. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  18. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: NeurIPS, pp. 804–816 (2019)

    Google Scholar 

  19. Fan, J., Cao, X., Yap, P.-T., Shen, D.: BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019)

    Article  Google Scholar 

  20. Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38(9), 2165–2176 (2019)

    Article  Google Scholar 

  21. Beg, M.F., Khan, A.: Computing an average anatomical atlas using LDDMM and geodesic shooting. In: ISBI, pp. 1116–1119, IEEE (2006)

    Google Scholar 

  22. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  23. Blaiotta, C., Freund, P., Cardoso, M.J., Ashburner, J.: Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction. NeuroImage 166, 117–134 (2018)

    Article  Google Scholar 

  24. Ashburner, J., Brudfors, M., Bronik, K., Balbastre, Y.: An algorithm for learning shape and appearance models without annotations. Med. Image Anal. 55, 197 (2019)

    Article  Google Scholar 

  25. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  26. Woods, R.P.: Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18(3), 769–788 (2003)

    Article  Google Scholar 

  27. Ashburner, J., Friston, K.J.: Computing average shaped tissue probability templates. NeuroImage 45(2), 333–341 (2009)

    Article  Google Scholar 

  28. Böhning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200 (1992)

    Article  MATH  Google Scholar 

  29. Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3), 786–802 (2009)

    Article  Google Scholar 

  30. Ardekani, B.A., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J.: Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J. Neurosci. Methods 142(1), 67–76 (2005)

    Article  Google Scholar 

  31. Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3), 954–967 (2011)

    Article  Google Scholar 

  32. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)

    Article  Google Scholar 

  33. Malone, I.B., et al.: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. NeuroImage 104, 366–372 (2015)

    Article  Google Scholar 

  34. Ridgway, G., et al.: Voxel-Wise analysis of paediatric liver MRI. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds.) MIUA 2018. CCIS, vol. 894, pp. 57–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95921-4_7

    Chapter  Google Scholar 

  35. Brudfors, M., Ashburner, J., Nachev, P., Balbastre, Y.: Empirical bayesian mixture models for medical image translation. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 1–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_1

    Chapter  Google Scholar 

Download references

Acknowledgements

MB was funded by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1) and the Department of Health’s NIHR-funded Biomedical Research Centre at University College London Hospitals. YB was funded by the MRC and Spinal Research Charity through the ERA-NET Neuron joint call (MR/R000050/1). MB and JA were funded by the EU Human Brain Project’s Grant Agreement No. 785907 (SGA2). GF and the Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome (203147/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Brudfors .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1571 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brudfors, M., Balbastre, Y., Flandin, G., Nachev, P., Ashburner, J. (2020). Flexible Bayesian Modelling for Nonlinear Image Registration. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics