Abstract
We describe a diffeomorphic registration algorithm that allows groups of images to be accurately aligned to a common space, which we intend to incorporate into the SPM software. The idea is to perform inference in a probabilistic graphical model that accounts for variability in both shape and appearance. The resulting framework is general and entirely unsupervised. The model is evaluated at inter-subject registration of 3D human brain scans. Here, the main modeling assumption is that individual anatomies can be generated by deforming a latent ‘average’ brain. The method is agnostic to imaging modality and can be applied with no prior processing. We evaluate the algorithm using freely available, manually labelled datasets. In this validation we achieve state-of-the-art results, within reasonable runtimes, against previous state-of-the-art widely used, inter-subject registration algorithms. On the unprocessed dataset, the increase in overlap score is over 17%. These results demonstrate the benefits of using informative computational anatomy frameworks for nonlinear registration.
M. Brudfors and Y. Balbastre—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
\((\text {TPR}_{\mathrm {MB}} - \text {TPR}_{\mathrm {Shoot}})/(\text {TPR}_{\mathrm {MB}} - \text {TPR}_{\mathrm {Affine}}) \times 100\%\).
References
Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.-B., Heather, J.D., Frackowiak, R.S.: Spatial registration and normalization of images. Hum. Brain Mapp. 3(3), 165–189 (1995)
Zöllei, L., Learned-Miller, E., Grimson, E., Wells, W.: Efficient population registration of 3D data. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 291–301. Springer, Heidelberg (2005). https://doi.org/10.1007/11569541_30
Heckemann, R.A., et al.: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1), 221–227 (2010)
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A.: Changes in grey matter induced by training. Nature 427(6972), 311–312 (2004)
Fox, P.T.: Spatial normalization origins: objectives, applications, and alternatives. Hum. Brain Mapp. 3(3), 161–164 (1995)
Csernansky, J.G., et al.: Hippocampal morphometry in schizophrenia by high dimensional brain mapping. PNAS 95(19), 11406–11411 (1998)
Mourao-Miranda, J., et al.: Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol. Med. 42(5), 1037–1047 (2012)
Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. NeuroImage 41(4), 1253–1266 (2008)
Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8(8), 665 (2011)
Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Trans. Med. Imaging 16(6), 864–877 (1997)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)
Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)
Andersson, J.L., Jenkinson, M., Smith, S., et al.: “Non-linear registration aka spatial normalisation FMRIB Technical report TR07JA2,” FMRIB Analysis Group of the University of Oxford (2007)
Bhatia, K.K., et al.: Groupwise combined segmentation and registration for atlas construction. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 532–540. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_65
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: NeurIPS, pp. 804–816 (2019)
Fan, J., Cao, X., Yap, P.-T., Shen, D.: BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019)
Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38(9), 2165–2176 (2019)
Beg, M.F., Khan, A.: Computing an average anatomical atlas using LDDMM and geodesic shooting. In: ISBI, pp. 1116–1119, IEEE (2006)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Blaiotta, C., Freund, P., Cardoso, M.J., Ashburner, J.: Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction. NeuroImage 166, 117–134 (2018)
Ashburner, J., Brudfors, M., Bronik, K., Balbastre, Y.: An algorithm for learning shape and appearance models without annotations. Med. Image Anal. 55, 197 (2019)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)
Woods, R.P.: Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18(3), 769–788 (2003)
Ashburner, J., Friston, K.J.: Computing average shaped tissue probability templates. NeuroImage 45(2), 333–341 (2009)
Böhning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200 (1992)
Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3), 786–802 (2009)
Ardekani, B.A., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J.: Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J. Neurosci. Methods 142(1), 67–76 (2005)
Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3), 954–967 (2011)
Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)
Malone, I.B., et al.: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. NeuroImage 104, 366–372 (2015)
Ridgway, G., et al.: Voxel-Wise analysis of paediatric liver MRI. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds.) MIUA 2018. CCIS, vol. 894, pp. 57–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95921-4_7
Brudfors, M., Ashburner, J., Nachev, P., Balbastre, Y.: Empirical bayesian mixture models for medical image translation. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 1–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_1
Acknowledgements
MB was funded by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1) and the Department of Health’s NIHR-funded Biomedical Research Centre at University College London Hospitals. YB was funded by the MRC and Spinal Research Charity through the ERA-NET Neuron joint call (MR/R000050/1). MB and JA were funded by the EU Human Brain Project’s Grant Agreement No. 785907 (SGA2). GF and the Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome (203147/Z/16/Z).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Brudfors, M., Balbastre, Y., Flandin, G., Nachev, P., Ashburner, J. (2020). Flexible Bayesian Modelling for Nonlinear Image Registration. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)