Abstract
Quantitative magnetic resonance imaging (qMRI) derives tissue-specific parameters – such as the apparent transverse relaxation rate \(R_2^\star \), the longitudinal relaxation rate \(R_1\) and the magnetisation transfer saturation – that can be compared across sites and scanners and carry important information about the underlying microstructure. The multi-parameter mapping (MPM) protocol takes advantage of multi-echo acquisitions with variable flip angles to extract these parameters in a clinically acceptable scan time. In this context, ESTATICS performs a joint loglinear fit of multiple echo series to extract \(R_2^\star \) and multiple extrapolated intercepts, thereby improving robustness to motion and decreasing the variance of the estimators. In this paper, we extend this model in two ways: (1) by introducing a joint total variation (JTV) prior on the intercepts and decay, and (2) by deriving a nonlinear maximum a posteriori estimate. We evaluated the proposed algorithm by predicting left-out echoes in a rich single-subject dataset. In this validation, we outperformed other state-of-the-art methods and additionally showed that the proposed approach greatly reduces the variance of the estimated maps, without introducing bias.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashburner, J., Brudfors, M., Bronik, K., Balbastre, Y.: An algorithm for learning shape and appearance models without annotations. NeuroImage (2018)
Bach, F.: Optimization with sparsity-inducing penalties. FNT Mach. Learn. 4(1), 1–106 (2011)
Bauer, C.M., Jara, H., Killiany, R.: Whole brain quantitative T2 MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging. NeuroImage 52(2), 508–514 (2010)
Brudfors, M., Balbastre, Y., Nachev, P., Ashburner, J.: MRI super-resolution using multi-channel total variation. In: 22nd Conference on Medical Image Understanding and Analysis, Southampton, UK (2018)
Chen, C., He, L., Li, H., Huang, J.: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction. Med. Image Anal. 49, 141–152 (2018)
Coupé, P., Manjón, J., Robles, M., Collins, D.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558–568 (2012)
Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)
Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)
Deoni, S.C.L., Williams, S.C.R., Jezzard, P., Suckling, J., Murphy, D.G.M., Jones, D.K.: Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T. NeuroImage 40(2), 662–671 (2008)
Dick, F., Tierney, A.T., Lutti, A., Josephs, O., Sereno, M.I., Weiskopf, N.: In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J. Neurosci. 32(46), 16095–16105 (2012)
Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
Hasan, K.M., Walimuni, I.S., Kramer, L.A., Narayana, P.A.: Human brain iron mapping using atlas-based T2 relaxometry. Magn. Reson. Med. 67(3), 731–739 (2012)
Helms, G., Dathe, H., Dechent, P.: Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn. Reson. Med. 59(3), 667–672 (2008)
Helms, G., Dathe, H., Kallenberg, K., Dechent, P.: High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 60(6), 1396–1407 (2008)
Huang, J., Chen, C., Axel, L.: Fast multi-contrast MRI reconstruction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 281–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_35
Lebrun, M., Buades, A., Morel, J.M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)
Liu, T., et al.: Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn. Reson. Med. 66(3), 777–783 (2011)
Lutti, A., Hutton, C., Finsterbusch, J., Helms, G., Weiskopf, N.: Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T. Magn. Reson. Med. 64(1), 229–238 (2010)
Manjón, J.V., Coupé, P., Buades, A., Louis Collins, D., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Med. Image Anal. 16(1), 18–27 (2012)
Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)
Ogg, R.J., Langston, J.W., Haacke, E.M., Steen, R.G., Taylor, J.S.: The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn. Reson. Imaging 17(8), 1141–1148 (1999)
Ordidge, R.J., Gorell, J.M., Deniau, J.C., Knight, R.A., Helpern, J.A.: Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn. Reson. Med. 32(3), 335–341 (1994)
Papp, D., Callaghan, M.F., Meyer, H., Buckley, C., Weiskopf, N.: Correction of inter-scan motion artifacts in quantitative R1 mapping by accounting for receive coil sensitivity effects. Magn. Reson. Med. 76(5), 1478–1485 (2016)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, New York (2007)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)
Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996)
Sereno, M.I., Lutti, A., Weiskopf, N., Dick, F.: Mapping the human cortical surface by combining quantitative T1 with retinotopy. Cereb. Cortex 23(9), 2261–2268 (2013)
Sigalovsky, I.S., Fischl, B., Melcher, J.R.: Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. NeuroImage 32(4), 1524–1537 (2006)
Tofts, P.S., et al.: Sources of variation in multi-centre brain MTR histogram studies: Body-coil transmission eliminates inter-centre differences. Magn. Reson. Mater. Phys. 19(4), 209–222 (2006). https://doi.org/10.1007/s10334-006-0049-8
Tofts, P.S.: Quantitative MRI of the Brain, 1st edn. Wiley, Hoboken (2003)
Tofts, P.S., Steens, S.C.A., van Buchem, M.A.: MT: magnetization transfer. In: Quantitative MRI of the Brain, pp. 257–298. Wiley, Hoboken (2003)
Weiskopf, N., Callaghan, M.F., Josephs, O., Lutti, A., Mohammadi, S.: Estimating the apparent transverse relaxation time (R2*) from images with different contrasts (ESTATICS) reduces motion artifacts. Front. Neurosci. 8, 278 (2014)
Weiskopf, N., et al.: Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95 (2013)
Xu, Z., Li, Y., Axel, L., Huang, J.: Efficient preconditioning in joint total variation regularized parallel MRI reconstruction. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 563–570. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_67
Acknowledgements
YB, MFC and JA were funded by the MRC and Spinal Research Charity through the ERA-NET Neuron joint call (MR/R000050/1). MB and JA were funded by the EU Human Brain Project’s Grant Agreement No 785907 (SGA2). MB was funded by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1) and the Department of Health NIHR-funded Biomedical Research Centre at University College London Hospitals. CL is supported by an MRC Clinician Scientist award (MR/R006504/1). The Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome [203147/Z/16/Z].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Balbastre, Y., Brudfors, M., Azzarito, M., Lambert, C., Callaghan, M.F., Ashburner, J. (2020). Joint Total Variation ESTATICS for Robust Multi-parameter Mapping. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-59713-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59712-2
Online ISBN: 978-3-030-59713-9
eBook Packages: Computer ScienceComputer Science (R0)