Abstract
Dynamic Contrast Enhancement Magnetic Resonance Imaging (DCE-MRI) is gaining popularity for computer aided diagnosis (CAD) of breast cancer. However, the performance of these CAD systems is severely affected when the number of DCE-MRI series is inadequate, inconsistent or limited. This work presents a High-Quality DCE-MRI Interpolation method based on Deep Neural Network (HQI-DNN) using an end-to-end trainable Convolutional Neural Network (CNN). It gives a good solution to the problem of inconsistent and inadequate quantity of DCE-MRI series for breast cancer analysis. Starting from a nested CNN for feature learning, the dynamic contrast enhanced features of breast lesions are learned by bidirectional contrast transformations between DCE-MRI series. Each transformation contains the spatial deformation field and the intensity change, enabling a variable-length multiple series interpolation of DCE-MRI. We justified the proposed method through extensive experiments on our dataset. It produced a more efficient result of breast DCE-MRI interpolation than other methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mihalco, S., Keeling, S., Murphy, S., O’Keeffe, S.: Comparison of the utility of clinical breast examination and MRI in the surveillance of women with a high risk of breast cancer. Clin. Radiol. 75(3), 194–199 (2020)
Luo, L., et al.: Deep angular embedding and feature correlation attention for breast MRI cancer analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 504–512. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_55
Romeo, V., et al.: Tumor segmentation analysis at different post-contrast time points: a possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur. J. Radiol. 126, 108907 (2020)
Antropova, N., Huynh, B., Giger, M.: Recurrent neural networks for breast lesion classification based on DCE-MRIs. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105752M. International Society for Optics and Photonics (2018)
Banaie, M., Soltanian-Zadeh, H., Saligheh-Rad, H.R., Gity, M.: Spatiotemporal features of DCE-MRI for breast cancer diagnosis. Comput. Methods Programs Biomed. 155, 153–164 (2018)
Haarburger, C., et al.: Multi scale curriculum CNN for context-aware breast MRI malignancy classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_54
Marrone, S., Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C.: An investigation of deep learning for lesions malignancy classification in breast DCE-MRI. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 479–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_44
El Adoui, M., Mahmoudi, S.A., Larhmam, M.A., Benjelloun, M.: MRI breast tumor segmentation using different encoder and decoder CNN architectures. Computers 8(3), 52–62 (2019)
Huang, P., et al.: CoCa-GAN: common-feature-learning-based context-aware generative adversarial network for glioma grading. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_18
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 113–123 (2019)
Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)
Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based frame interpolation for video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9000–9008 (2018)
Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3703–3712 (2019)
Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: IEEE International Conference on Computer Vision (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Zhang, H., Cao, X., Xu, L., Qi, L.: Conditional convolution generative adversarial network for bi-ventricle segmentation in cardiac MR images. In: Proceedings of the Third International Symposium on Image Computing and Digital Medicine, pp. 118–122 (2019)
Acknowledgments
This research was supported by the Key Research and Development Program of Shaanxi Province (the General Project of Social Development) (2020SF-049); Scientific Research Project of Education Department of Shaanxi Provincial Government (19JK0808); Xi’an Science and Technology Plan Project (20YXYJ0010(5)).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Feng, J., Pan, X., Yang, D., Chen, B. (2020). High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science(), vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-59520-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59519-7
Online ISBN: 978-3-030-59520-3
eBook Packages: Computer ScienceComputer Science (R0)