High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations | SpringerLink
Skip to main content

High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12417))

Included in the following conference series:

  • 1258 Accesses

Abstract

Dynamic Contrast Enhancement Magnetic Resonance Imaging (DCE-MRI) is gaining popularity for computer aided diagnosis (CAD) of breast cancer. However, the performance of these CAD systems is severely affected when the number of DCE-MRI series is inadequate, inconsistent or limited. This work presents a High-Quality DCE-MRI Interpolation method based on Deep Neural Network (HQI-DNN) using an end-to-end trainable Convolutional Neural Network (CNN). It gives a good solution to the problem of inconsistent and inadequate quantity of DCE-MRI series for breast cancer analysis. Starting from a nested CNN for feature learning, the dynamic contrast enhanced features of breast lesions are learned by bidirectional contrast transformations between DCE-MRI series. Each transformation contains the spatial deformation field and the intensity change, enabling a variable-length multiple series interpolation of DCE-MRI. We justified the proposed method through extensive experiments on our dataset. It produced a more efficient result of breast DCE-MRI interpolation than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mihalco, S., Keeling, S., Murphy, S., O’Keeffe, S.: Comparison of the utility of clinical breast examination and MRI in the surveillance of women with a high risk of breast cancer. Clin. Radiol. 75(3), 194–199 (2020)

    Article  Google Scholar 

  2. Luo, L., et al.: Deep angular embedding and feature correlation attention for breast MRI cancer analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 504–512. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_55

    Chapter  Google Scholar 

  3. Romeo, V., et al.: Tumor segmentation analysis at different post-contrast time points: a possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur. J. Radiol. 126, 108907 (2020)

    Article  Google Scholar 

  4. Antropova, N., Huynh, B., Giger, M.: Recurrent neural networks for breast lesion classification based on DCE-MRIs. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105752M. International Society for Optics and Photonics (2018)

    Google Scholar 

  5. Banaie, M., Soltanian-Zadeh, H., Saligheh-Rad, H.R., Gity, M.: Spatiotemporal features of DCE-MRI for breast cancer diagnosis. Comput. Methods Programs Biomed. 155, 153–164 (2018)

    Article  Google Scholar 

  6. Haarburger, C., et al.: Multi scale curriculum CNN for context-aware breast MRI malignancy classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_54

    Chapter  Google Scholar 

  7. Marrone, S., Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C.: An investigation of deep learning for lesions malignancy classification in breast DCE-MRI. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 479–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_44

    Chapter  Google Scholar 

  8. El Adoui, M., Mahmoudi, S.A., Larhmam, M.A., Benjelloun, M.: MRI breast tumor segmentation using different encoder and decoder CNN architectures. Computers 8(3), 52–62 (2019)

    Article  Google Scholar 

  9. Huang, P., et al.: CoCa-GAN: common-feature-learning-based context-aware generative adversarial network for glioma grading. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_18

    Chapter  Google Scholar 

  10. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 113–123 (2019)

    Google Scholar 

  11. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  12. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based frame interpolation for video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  13. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9000–9008 (2018)

    Google Scholar 

  14. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3703–3712 (2019)

    Google Scholar 

  15. Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26

    Chapter  Google Scholar 

  16. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  17. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Zhang, H., Cao, X., Xu, L., Qi, L.: Conditional convolution generative adversarial network for bi-ventricle segmentation in cardiac MR images. In: Proceedings of the Third International Symposium on Image Computing and Digital Medicine, pp. 118–122 (2019)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Research and Development Program of Shaanxi Province (the General Project of Social Development) (2020SF-049); Scientific Research Project of Education Department of Shaanxi Provincial Government (19JK0808); Xi’an Science and Technology Plan Project (20YXYJ0010(5)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Wang or Baoying Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Feng, J., Pan, X., Yang, D., Chen, B. (2020). High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science(), vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59520-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59519-7

  • Online ISBN: 978-3-030-59520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics