Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodology | SpringerLink
Skip to main content

Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodology

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12393))

Included in the following conference series:

Abstract

A mechanism for predicting whether individual regions will meet there UN Sustainability for Development Goals (SDGs) is presented which takes into consideration the potential relationships between time series associated with individual SDGs, unlike previous work where an independence assumption was made. The challenge is in identifying the existence of relationships and then using these relationships to make SDG attainment predictions. To this end the SDG Correlation/Causal Attainment Prediction (SDG-CAP) methodology is presented. Five alternative mechanisms for determining time series relationships are considered together with three prediction mechanisms. The results demonstrate that by considering the relationships between time series, by combining a number of popular causal and correlation identification mechanisms, more accurate SDG forecast predictions can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://unstats.un.org/SDGs/indicators/database/.

References

  1. Alharbi, Y., Arribas-Be, D., Coenen, F.: Sustainable development goal attainment prediction: a hierarchical framework using time series modelling. In: KDIR (2019)

    Google Scholar 

  2. Athanasopoulos, G., Ahmed, R.A., Hyndman, R.J.: Hierarchical forecasts for Australian domestic tourism. Int. J. Forecast. 25(1), 146–166 (2009)

    Article  Google Scholar 

  3. Ben-gong, Z., Weibo, L., Yazhou, S., Xiaoping, L., Luonan, C.: Detecting causality from short time-series data based on prediction of topologically equivalent attractors. BMC Syst. Biol. 11, 141–150 (2017)

    Article  Google Scholar 

  4. Benesty J., Chen J., Huang Y., Cohen I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol 2, pp. 1–4. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-00296-0_5

  5. Chen, K., Zhou, Y., Dai, F.: A LSTM-based method for stock returns prediction: a case study of China stock market. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2823–2824. IEEE (2015)

    Google Scholar 

  6. Hema Divya, K., Rama Devi, V.: A study on predictors of GDP: early signals. Procedia Econ. Finan. 11, 375–382 (2014)

    Article  Google Scholar 

  7. Dörgő, G., Sebestyén, V., Abonyi, J.: Evaluating the interconnectedness of the sustainable development goals based on the causality analysis of sustainability indicators. Sustainability 10(10), 3766 (2018)

    Article  Google Scholar 

  8. Epprecht, C., et al.: Comparing variable selection techniques for linear regression: Lasso and autometrics. Centre d’économie de la Sorbonne (2013)

    Google Scholar 

  9. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Article  Google Scholar 

  10. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econ. Soc. 37, 424–438 (1969)

    Article  Google Scholar 

  11. Hall, C.A., Weston Meyer, W.: Optimal error bounds for cubic spline interpolation. J. Approx. Theor. 16(2), 105–122 (1976)

    Article  MathSciNet  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (May 2018)

    Google Scholar 

  14. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006)

    Article  Google Scholar 

  15. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38(18), 2895–2907 (2004)

    Article  Google Scholar 

  16. Krogh, F.T.: Efficient algorithms for polynomial interpolation and numerical differentiation. Math. Comput. 24(109), 185–190 (1970)

    Article  MathSciNet  Google Scholar 

  17. Lean, H.H., Smyth, R.: Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia. Energy 35(9), 3640–3648 (2010)

    Article  Google Scholar 

  18. Li, J., Chen, W.: Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models. Int. J. Forecast. 30(4), 996–1015 (2014)

    Article  Google Scholar 

  19. Narayan, P.K., Smyth, R.: Multivariate Granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries. Energy Policy 37(1), 229–236 (2009)

    Article  Google Scholar 

  20. Nauta, M., Bucur, D., Seifert, C.: Causal discovery with attention-based convolutional neural networks. Mach. Learn. Knowl. Extr. 1(1), 312–340 (2019)

    Article  Google Scholar 

  21. Wankeun, O., Lee, K.: Causal relationship between energy consumption and GDP revisited: the case of Korea 1970–1999. Energy Econ. 26(1), 51–59 (2004)

    Google Scholar 

  22. Pao, H.-T., Tsai, C.-M.: Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 36(1), 685–693 (2011)

    Article  Google Scholar 

  23. Pérez-Rodríguez, J.V., Ledesma-Rodríguez, F., Santana-Gallego, M.: Testing dependence between GDP and tourism’s growth rates. Tour. Manage. 48, 268–282 (2015)

    Article  Google Scholar 

  24. Qing, X., Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 148, 461–468 (2018)

    Article  Google Scholar 

  25. Roy, S.S., Mittal, D., Basu, A., Abraham, A.: Stock market forecasting using LASSO linear regression model. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conference for Industrial Advancement. AISC, vol. 334, pp. 371–381. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13572-4_31

    Chapter  Google Scholar 

  26. Sapkota, S.: E-Handbook on Sustainable Development Goals. United Nations (2019)

    Google Scholar 

  27. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72, 37–45 (2017)

    Article  MathSciNet  Google Scholar 

  28. Tian, S., Yan, Y., Guo, H.: Variable selection and corporate bankruptcy forecasts. J. Bank. Finan. 52, 89–100 (2015)

    Article  Google Scholar 

  29. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  30. UN: Transforming our World: the 2030 Agenda for Sustainable Development. Working papers, eSocialSciences (2015)

    Google Scholar 

  31. United Nations Development programme. Millennium Development Goals (2007)

    Google Scholar 

  32. Vinkler, P.: Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non-EU countries. Scientometrics 74(2), 237–254 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wang, E., Cook, D., Hyndman, R.J.: A new tidy data structure to support exploration and modeling of temporal data. arXiv e-prints arXiv:1901.10257 (January 2019)

  34. Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E.W.T., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassir Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alharbi, Y., Coenen, F., Arribas-Bel, D. (2020). Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodology. In: Song, M., Song, IY., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2020. Lecture Notes in Computer Science(), vol 12393. Springer, Cham. https://doi.org/10.1007/978-3-030-59065-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59065-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59064-2

  • Online ISBN: 978-3-030-59065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics