Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection of Painted Historical Vaults by Means of Modified DSLR Cameras, Open Source Programs and Signal Processing Techniques | SpringerLink
Skip to main content

Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection of Painted Historical Vaults by Means of Modified DSLR Cameras, Open Source Programs and Signal Processing Techniques

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Historical architecture is a primary element containing the identity values of a society. The wide diffusion of many ancient buildings gathering part of these values on painting walls over territories often characterized by poor technological or economic resources brings to consider the development of low-cost protocols to inspect valued surfaces and to give the authorities in charge of preservation and restoration adequate technical information. Here we present the preliminary results of a recent application of remote sensing micro-geophysical techniques to typical architectural targets such as vaults. A modified commercial Digital Single-Lens Reflex (DSLR) camera was used to acquire multispectral datasets on portions of a painted vault. Multispectral datasets were used raw or after the application of a pre-processing step with a Multi Images Stacking (MIS) algorithm. Multispectral images were then processed with spatial wavelet decomposition, histogram enhancing, thresholds application, image fusion, false colors compositing and Principal Component Analysis (PCA) techniques. Software used have been GNU Image Manipulation Program (GIMP) and Mathworks MATLAB (which can be substituted for the processing steps proposed by the built-in functions of GNU OCTAVE open-source software). Processed images were able to highlight features on vault paintings revealing details of the surface or its very shallow layers which were impossible or very difficult to distinguish in raw data. In fact, they emphasized low-visible details, differences in apparently similar finishes or pigments, cracks and probably details of surface preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fiorino, D.R., Bagnolo, V., Grillo, S., Nonne, S., Schirru, M.: Integrated sciences for heritage reuse: interdisciplinary studies on the piarist college of San Giuseppe in Cagliari (Italy). Int. J. Heritage Archit. 1(4), 517–537 (2017)

    Google Scholar 

  2. Arosio, D., Hojat, A., Munda, S., Zanzi, L.: High-frequency GPR investigations in Saint Vigilius Cathedral, Trento. In: 24th European Meeting of Environmental and Engineering Geophysics, Houten, The Netherlands, pp. 1–5. EAGE (2018)

    Google Scholar 

  3. Binda, L., Lualdi, M., Saisi, A., Zanzi, L.: Radar investigation as a complementary tool for the diagnosis of historic masonry buildings. Int. J. Mater. Struct. Integr. 5(1), 1–25 (2011)

    Article  Google Scholar 

  4. Capizzi, P., Cosentino, P.L.: Electromagnetic and ultrasonic investigations on a Roman marble slab. J. Geophys. Eng. 8(3), S117–S125 (2011)

    Article  Google Scholar 

  5. Cardarelli, E., De Donno, G., Scatigno, C., Oliveti, I., Martinez, M.P., Prieto-Taboada, N.: Geophysical and geochemical techniques to assess the origin of rising damp of a Roman building (Ostia Antica archaeological site). Microchem. J. 129, 49–57 (2016)

    Article  Google Scholar 

  6. Cosentino, P.L., Capizzi, P., Fiandaca, G., Martorana, R., Messina, P.: Advances in microgeophysics for engineering and cultural heritage. J. Earth Sci. 20(3), 626–639 (2009)

    Article  Google Scholar 

  7. Cosentino, P.L., Fiandaca, G., Messina, P., Martorana, R., Capizzi, P., Amoroz, I.R.: Method for detecting a sonic imprint of a three-dimensional object and related apparatus. U.S. Patent No. 8,166,820, 1 May 2012

    Google Scholar 

  8. Deiana, R., Leucci, G., Martorana, R.: New perspectives on geophysics for archaeology: a special issue. Surv. Geophys. 39(6), 1035–1038 (2018)

    Article  Google Scholar 

  9. Martinho, E., Dionísio, A.: Main geophysical techniques used for non-destructive evaluation in cultural built heritage: a review. J. Geophys. Eng. 11(5), 053001 (2014)

    Article  Google Scholar 

  10. Pirinu, A., Balia, R., Piroddi, L., Trogu, A., Utzeri, M., Vignoli, G.: Deepening the knowledge of military architecture in an urban context through digital representations integrated with geophysical surveys. the city walls of Cagliari (Italy). In: 2018 Metrology for Archaeology and Cultural Heritage, New York, USA, pp. 211–215. IEEE (2018)

    Google Scholar 

  11. Piroddi, L., Vignoli, G., Trogu, A., Deidda, G.P.: Non-destructive diagnostics of architectonic elements in San Giuseppe Calasanzio’s Church in Cagliari: a test-case for micro-geophysical methods within the framework of holistic/integrated protocols for artefact knowledge. In: 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, pp. 17–21, New York, USA. IEEE (2018)

    Google Scholar 

  12. Ranieri, G., et al.: Method and system for activating and controlling a water-repelling process in walls. European Patent EP3040490B1, priority 2014-12-30, grant 2017 (2014)

    Google Scholar 

  13. Ranieri, G., Trogu, A., Loddo, F., Piroddi, L., Cogoni, M.: Digital museum from integrated 3D aerial photogrammetry, laser scanner and geophysics data. In: Proceedings of 24th European Meeting of Environmental and Engineering Geophysics, September 2018, Houten, The Netherlands, pp. 1–5. EAGE (2018)

    Google Scholar 

  14. Sambuelli, L., Comina, C., Catanzariti, G., Barsuglia, F., Morelli, G., Porcelli, F.: The third KV62 radar scan: searching for hidden chambers adjacent to Tutankhamun’s tomb. J. Cult. Herit. 39, 288–296 (2019)

    Article  Google Scholar 

  15. Tsourlos, P.I., Tsokas, G.N.: Non-destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeol. Prospect. 18(3), 173–186 (2011)

    Google Scholar 

  16. Valluzzi, M.R., Lorenzoni, F., Deiana, R., Taffarel, S., Modena, C.: Non-destructive investigations for structural qualification of the Sarno Baths Pompeii. J. Cult. Herit. 40, 280–287 (2019)

    Article  Google Scholar 

  17. Piro, S., et al.: Geophysics and cultural heritage: a living field of research for Italian geophysicists. First Break 33(8), 43–54 (2015)

    Article  Google Scholar 

  18. Porcelli, F., et al.: Integrated geophysics and geomatics surveys in the valley of the kings. Sensors 20(6), 1552 (2020)

    Article  Google Scholar 

  19. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley, Hoboken (2015)

    Google Scholar 

  20. Bernardini, F., et al.: Early Roman military fortifications and the origin of Trieste, Italy. Proc. Natl. Acad. Sci. 112(13), E1520–E1529 (2015)

    Article  Google Scholar 

  21. Costanzo, A., Minasi, M., Casula, G., Musacchio, M., Buongiorno, M.F.: Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensors 15(1), 194–213 (2015)

    Article  Google Scholar 

  22. Fiorino, D.R., Giannattasio, C., Grillo, S., Pintus, V., Porcu, M., Quaquero, E., Vacca, G.: The management of the restoration site. Diagnostic techniques, problems and perspectives. In: GEORES 2019 2nd International Conference on “Cultural Heritage: challenges, new perspectives and technology innovation”. Springer, Heidelberg (2019)

    Google Scholar 

  23. Salonia, P., Scolastico, S., Pozzi, A., Marcolongo, A., Messina, T.L.: Multi-scale cultural heritage survey: quick digital photogrammetric systems. J. Cult. Herit. 10, e59–e64 (2009)

    Article  Google Scholar 

  24. Shi, R., Xu, M., Zhu, L.: New techniques of remote sensing in the university of architecture and planning. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, New York, vol. 2, p. II-642. IEEE (2009)

    Google Scholar 

  25. Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., Wang, R.: Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6(11), 10413–10434 (2014)

    Article  Google Scholar 

  26. Yastikli, N.: Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 8(4), 423–427 (2007)

    Article  Google Scholar 

  27. Fioriti, V., Roselli, I., Tatì, A., Romano, R., De Canio, G.: Motion magnification analysis applied to the dynamic identification of historic constructions. IOP Conf. Ser. Mater. Sci. Eng. 364(1), 012001 (2018). IOP Publishing

    Google Scholar 

  28. Mistretta, F., Sanna, G., Stochino, F., Vacca, G.: Structure from motion point clouds for structural monitoring. Remote Sens. 11(16), 1940 (2019)

    Article  Google Scholar 

  29. Calcina, S.V., Piroddi, L., Ranieri, G.: Fast dynamic control of damaged historical buildings: a new useful approach for Structural Health Monitoring after an earthquake. ISRN Civ. Eng. 2013, 1–6 (2013). Article ID 527604

    Google Scholar 

  30. Calcina, S.V., Piroddi, L., Ranieri, G.: Vibration analysis of historic bell towers by means of contact and remote sensing measurements. Nondestruct. Test. Eval. 31(4), 331–359 (2016)

    Article  Google Scholar 

  31. Marchisio, M., et al.: Applications of new technologies of ground-based interferometric radar to the study of cultural heritage buildings. In: 14th European Meeting of Environmental and Engineering Geophysics, Houten, The Netherlands, pp. 1–4, EAGE (2008)

    Google Scholar 

  32. Marchisio, M., Piroddi, L., Ranieri, G., Calcina, S.V., Farina, P.: Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: the case of the Leaning Tower in Pisa. J. Geophys. Eng. 11(5), 055004 (2014)

    Article  Google Scholar 

  33. Piroddi, L., Calcina, S.V.: Integrated vibration analysis for historical dome structures: a complementary approach based on conventional geophysical methods and remote sensing techniques. In: Gervasi, O. (eds.) ICCSA 2020, LNCS, vol. 12255, pp. 928–943. Springer, Heidelberg (2020)

    Google Scholar 

  34. Cigna, F., Lasaponara, R., Masini, N., Milillo, P., Tapete, D.: Persistent scatterer interferometry processing of COSMO-SkyMed StripMap HIMAGE time series to depict deformation of the historic centre of Rome, Italy. Remote Sens. 6(12), 12593–12618 (2014)

    Article  Google Scholar 

  35. Milillo, P., Giardina, G., DeJong, M.J., Perissin, D., Milillo, G.: Multi-temporal InSAR structural damage assessment: The London crossrail case study. Remote Sens. 10(2), 287 (2018)

    Article  Google Scholar 

  36. Tapete, D., Casagli, N., Luzi, G., Fanti, R., Gigli, G., Leva, D.: Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 40(1), 176–189 (2013)

    Article  Google Scholar 

  37. Mazzanti, P., Brunetti, A., Scarascia Mugnozza, G.: Mode TinSAR: an ESA incubation project dedicated to the terrestrial SAR interferometry. In: Proceedings of “Fringe 2011 Workshop”, Frascati, Italy, 19–23 September 2011, ESA SP-697, January 2012

    Google Scholar 

  38. Bendada, A., Sfarra, S., Ibarra, C., Akhloufi, M., Pradere, C., Maldague, X.: Subsurface imaging for panel paintings inspection: a comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra. Opto-Electron. Rev. 23(1), 90–101 (2015)

    Article  Google Scholar 

  39. Cosentino, A.: Terahertz and cultural heritage science: examination of art and archaeology. Technologies 4(1), 6 (2016)

    Article  Google Scholar 

  40. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5(1), 119–127 (2004)

    Article  Google Scholar 

  41. Carlomagno, G.M., Di Maio, R., Meola, C., Roberti, N.: Infrared thermography and geophysical techniques in cultural heritage conservation. Quant. InfraRed Thermogr. J. 2(1), 5–24 (2005)

    Article  Google Scholar 

  42. Arndt, R.W.: Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 53(4), 246–253 (2010)

    Article  Google Scholar 

  43. Sfarra, S., Marcucci, E., Ambrosini, D., Paoletti, D.: Infrared exploration of the architectural heritage: from passive infrared thermography to hybrid infrared thermography (HIRT) approach. Materiales de Construcción 66(323), 094, 1–16 (2016)

    Google Scholar 

  44. Perilli, S., Sfarra, S., Ambrosini, D., Paoletti, D., Mai, S., Scozzafava, M., Yao, Y.: Combined experimental and computational approach for defect detection in precious walls built in indoor environments. Int. J. Therm. Sci. 129, 29–46 (2018)

    Article  Google Scholar 

  45. Piroddi, L., Calcina, S.V., Fiorino, D.R., Grillo, S., Trogu, A., Vignoli, G.: Geophysical and remote sensing techniques for evaluating historical stratigraphy and assessing the conservation status of defensive structures heritage: preliminary results from the military buildings at San Filippo bastion, Cagliari, Italy. In: Gervasi, O., et al. ICCSA 2020, LNCS, vol. 12255, pp. 944–959. Springer, Heidelberg (2020)

    Google Scholar 

  46. Mercuri, F., Zammit, U., Orazi, N., Paoloni, S., Marinelli, M., Scudieri, F.: Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 104(2), 475 (2011)

    Article  Google Scholar 

  47. Orazi, N., et al.: Thermographic analysis of bronze sculptures. Stud. Conserv. 61(4), 236–244 (2016)

    Article  Google Scholar 

  48. Di Tuccio, M.C., Ludwig, N., Gargano, M., Bernardi, A.: Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Herit. Sci. 3(1), 1–8 (2015). https://doi.org/10.1186/s40494-015-0041-6

    Article  Google Scholar 

  49. Peeters, J., et al.: IR Reflectography and active thermography on artworks: the added value of the 1.5–3 µm Band. App. Sci. 8(1), 50 (2018)

    Google Scholar 

  50. Stillman, G.E., Van Valkenburg, M.E.: Reference Data for Engineers: Radio, Electronics. Computers and Communications. Elsevier, Amsterdam (2001)

    Google Scholar 

  51. Verhoeven, G.: Basics of photography for cultural heritage imaging. In: Stylianidis, E., Remondino, F. (eds.) 3D Recording, Documentation and Management of Cultural Heritage, pp. 127–251. Whittles Publishing, Dunbeath (2016)

    Google Scholar 

  52. Marengo, E., et al.: Development of a technique based on multi-spectral imaging for monitoring the conservation of cultural heritage objects. Anal. Chim. Acta 706, 229–237 (2011)

    Article  Google Scholar 

  53. Lerma, J.L.: Automatic plotting of architectural facades with multispectral images. J. Surv. Eng. 131(3), 73–77 (2005)

    Article  Google Scholar 

  54. Remondino, F., Rizzi, A.: Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Appl. Geomat. 2(3), 85–100 (2010)

    Article  Google Scholar 

  55. Cogoni, M.: Nuove tecnologie non distruttive per lo studio e il restauro dei beni monumenta-li: applicazioni termografiche e multispettrali nell’ipogeo di San Salvatore di Sinis in Cabras. M.Sc. thesis, academic year 2014/15

    Google Scholar 

  56. Piroddi, L., Ranieri, G., Cogoni, M., Trogu, A., Loddo, F.: Time and spectral multiresolution remote sensing for the study of ancient wall drawings at San Salvatore hypogeum, Italy”. In: Proceedings of the 22nd European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2016, Houten, The Netherlands, pp. 1–5. EAGE (2016)

    Google Scholar 

  57. Trogu, A., Cogoni, M., Ranieri, G., Piroddi, L., Loddo, F.: Invisible but not lost. The recovery of the wall drawings of the hypogeum of San Salvatore di Sinis (Sardinia, Italy). In: Proceedings of 24th Annual Meeting of the European Association of Archaeologists, vol. 1, p. 489. Edicions de la Universitat de Barcelona, Barcelona (2018)

    Google Scholar 

  58. Whitt, P.: Beginning Photo Retouching and Restoration using GIMP. Apress, New York (2014)

    Book  Google Scholar 

  59. Wallisch, P.: Principal components analysis. In: Wallisch, P., Lusignan, M.E., Benayoun, M.D., Baker, T.I., Dickey, A.S., Hatsopoulos, N.G. (eds.) MATLAB for Neuroscientists, pp. 305–315. Academic Press, Cambridge (2014)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the essential help of L. Noli and M. Sitzia during data acquisition and instrumental setup. They also would like to thank F. Mura for the photo of Fig. 7.a. Finally, a special thanks to prof. D.R. Fiorino and the local prefecture for permitting the access to the San Giuseppe monumental structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Piroddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piroddi, L., Calcina, S.V., Trogu, A., Vignoli, G. (2020). Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection of Painted Historical Vaults by Means of Modified DSLR Cameras, Open Source Programs and Signal Processing Techniques. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics