Embryo Spatial Model Reconstruction | SpringerLink
Skip to main content

Embryo Spatial Model Reconstruction

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Time lapse microscopy offered new solutions to study embryo development process. It allows embryologist to monitor embryo growth in real time and evaluate them without interfering into their growth environment. Embryo evaluation during growth process is one of the key criteria in embryo selection for fertilization. Live embryo monitoring is time consuming and new tools are offered to automate part of process. Our proposed algorithm gives new possibilities for embryo monitoring. It uses embryo images which are taken from different embryo layers, extracts embryo cell features and returns metrical evaluation to compare different embryos. High number of extracted features shows embryo fragmentation. Other tool which we present is spatial embryo model. Features extracted from embryo layers are combined together to spatial model. It allows embryologist to examine embryo model and compare different layers in one space. The obtained spatial embryo model will be later used to develop new algorithms for embryo analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vaegter, K.K., et al.: Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil. Steril. 107(3), 641–648 (2017)

    Article  Google Scholar 

  2. Margalioth, E.J., Ben-Chetrit, A., Gal, M., Eldar-Geva, T.: Investigation and treatment of repeated implantation failure following IVF-ET. Hum. Reprod. 21(12), 3036–3043 (2006)

    Article  Google Scholar 

  3. Lindner, G.M., Wright Jr., R.W.: Bovine embryo morphology and evaluation. Theriogenology 20(4), 407–416 (1983)

    Article  Google Scholar 

  4. Wang, Y., Moussavi, F., Lorenzen, P.: Automated embryo stage classification in time-lapse microscopy video of early human embryo development. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 460–467. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_57

    Chapter  Google Scholar 

  5. Khan, A., Gould, S., Salzmann, M.: Automated monitoring of human embryonic cells up to the 5-cell stage in time-lapse microscopy images. In: Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015, pp. 389–393 (2015)

    Google Scholar 

  6. Nandy, K., et al.: Segmentation and quantitative analysis of individual cells in developmental tissues. In: Lewandoski, M. (ed.) Mouse Molecular Embryology. MMB, vol. 1092, pp. 235–253. Springer, Boston (2014). https://doi.org/10.1007/978-1-60327-292-6_16

    Chapter  Google Scholar 

  7. Khan, A., Gould, S., Salzmann, M.: Deep convolutional neural networks for human embryonic cell counting. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 339–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_25

    Chapter  Google Scholar 

  8. Chen, T.-J., Zheng, W.-L., Liu, C.-H., Huang, I., Lai, H.-H., Liu, M.: Using deep learning with large dataset of microscope images to develop an automated embryo grading system. Fertil. Reprod. 01, 1–6 (2019). https://doi.org/10.1142/s2661318219500051

    Article  Google Scholar 

  9. Kheradmand, S., Singh, A., Saeedi, P., Au, J., Havelock, J.: Inner cell mass segmentation in human HMC embryo images using fully convolutional network. In: Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017, pp. 1752–1756 (2017)

    Google Scholar 

  10. Manna, C., Nanni, L., Lumini, A., Pappalardo, S.: Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online 26, 42–49 (2013)

    Article  Google Scholar 

  11. Khan, A., Gould, S., Salzmann, M.: A linear chain markov model for detection and localization of cells in early stage embryo development. In: Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 6–9 January 2015, pp. 526–533 (2015)

    Google Scholar 

  12. Cao, J., Wong, M., Zhao, Z., et al.: 3DMMS: robust 3D membrane morphological segmentation of C. elegans embryo. BMC Bioinf. 20, 176 (2019). https://doi.org/10.1186/s12859-019-2720-x

    Article  Google Scholar 

  13. Patil, S.N., Wali, U.V., Swamy, M.K.: Selection of single potential embryo to improve the success rate of implantation in IVF procedure using machine learning techniques. In: 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0881–0886 (2019)

    Google Scholar 

  14. Rad, R.M., Saeedi, P., Au, J., Havelock, J.: Blastomere cell counting and centroid localization in microscopic images of human embryo. In: 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), Vancouver, BC, pp. 1–6 (2018)

    Google Scholar 

  15. Zhang, K., et al.: Zebrafish embryo vessel segmentation using a novel dual ResUNet model. Comput. Intell. Neurosci. 2019, 1–14 (2019). https://doi.org/10.1155/2019/8214975

    Article  Google Scholar 

  16. Heo, Y.J., Lee, D., Kang, J., et al.: Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip. Sci Rep 7, 11651 (2017)

    Article  Google Scholar 

  17. Agrawal, R., Satapathy, S., Bagla, G., Rajakumar, K.: Detection of white blood cell cancer using image processing. In: 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, pp. 1–6 (2019)

    Google Scholar 

  18. Dvanesh, V.D., Lakshmi, P.S., Reddy, K., Vasavi, A.S.: Blood cell count using digital image processing. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, pp. 1–7 (2018)

    Google Scholar 

  19. Abdeldaim, A.M., Sahlol, A.T., Elhoseny, M., Hassanien, A.E.: Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. In: Hassanien, A.E., Oliva, D.A. (eds.) Advances in Soft Computing and Machine Learning in Image Processing. SCI, vol. 730, pp. 131–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63754-9_7

    Chapter  Google Scholar 

  20. Caicedo, J., Cooper, S., Heigwer, F., et al.: Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017)

    Article  Google Scholar 

  21. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_12

    Chapter  Google Scholar 

  22. Nitta, N., et al.: Intelligent image-activated cell sorting. SSRN Electron. J. 175, 266–276 (2018). https://doi.org/10.2139/ssrn.3204560

    Article  Google Scholar 

  23. Esco Medical | Miri® Time-Lapse Incubator technical specification (2013). www.escoglobal.com/products/download/1381288481.pdf

  24. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, 3rd edn. Morgan Kauffman Publishers, Burlington (2005). Chapter 10

    Google Scholar 

Download references

Acknowledgments

The authors also would like to thank Esco Global for kindly provided embryo image dataset and Živilė Čerkienė for her expert opinion and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare no conflict of interest.

Corresponding author

Correspondence to Darius Dirvanauskas .

Editor information

Editors and Affiliations

Ethics declarations

The permit for ethical studies for using the human subject related materials was issued by the Ethics Committee of the Faculty of Informatics, in Kaunas University of Technology. The number of a permit is: IFEP201706-3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dirvanauskas, D., Maskeliūnas, R., Raudonis, V., Misra, S. (2020). Embryo Spatial Model Reconstruction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics