Soil Ecosystem Services and Sediment Production: The Basilicata Region Case Study | SpringerLink
Skip to main content

Soil Ecosystem Services and Sediment Production: The Basilicata Region Case Study

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The conservation of soil and multiple ecosystem services it provides, is crucial for human well-being, for pursuing many of the Sustainable Development Goals and for addressing some of the most important challenges of our society. However several factors contribute to soil degradation, including climatic characteristics, lithological and morphological features and transformation processes. Only the last ones can be governed and that is the reason why spatial planning needs tools and analyses to interpret the role of land use changes in complex dynamics such as the erosive phenomena. This work presents the results obtained from the implementation of the InVEST SDR module on the territory of Basilicata Region and considering the evolution occurred between 1990 and 2018. Our outcomes show an intensification of erosion phenomena mainly along the Apennine chain and the coastal area of the Tyrrhenian Sea. Although this area corresponds to the higher average rainfall erosivity over the entire period, the most significant soil loss occurs in correspondence with unfavorable land use changes. The negative connotation typically associated with deforestation, conversion of agricultural soils to arable lands and thinning or total loss of vegetation becomes a measurable quantity, at least from one of several points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kibblewhite, M.G., Ritz, K., Swift, M.J.: Soil health in agricultural systems (2008). https://doi.org/10.1098/rstb.2007.2178

  2. Pereira, P., Bogunovic, I., Muñoz-Rojas, M., Brevik, E.C.: Soil ecosystem services, sustainability, valuation and management (2018). https://doi.org/10.1016/j.coesh.2017.12.003

  3. Dominati, E., Patterson, M., Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69, 1858–1868 (2010). https://doi.org/10.1016/j.ecolecon.2010.05.002

    Article  Google Scholar 

  4. Stringer, L.: Can the UN Convention to combat desertification guide sustainable use of the world’s soils? Front. Ecol. Environ. 6, 138–144 (2008). https://doi.org/10.1890/070060

    Article  Google Scholar 

  5. Udawatta, R.P., Gantzer, C.J., Jose, S.: Agroforestry practices and soil ecosystem services. In: Soil Health and Intensification of Agroecosystems, pp. 305–333. Elsevier Inc. (2017). https://doi.org/10.1016/B978-0-12-805317-1.00014-2

  6. Pascual, U., et al.: On the value of soil biodiversity and ecosystem services. Ecosyst. Serv. 15, 11–18 (2015). https://doi.org/10.1016/j.ecoser.2015.06.002

    Article  Google Scholar 

  7. Gregory, A.S., et al.: A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 31, 1–15 (2015). https://doi.org/10.1111/sum.12212

    Article  Google Scholar 

  8. Raclot, D., Bissonnais, Y.L., Annabi, M., Sabir, M.: Sub-chapter 2.3.3. Challenges for mitigating mediterranean soil erosion under global change. In: The Mediterranean region under climate change, pp. 311–318. IRD Éditions (2018). https://doi.org/10.4000/books.irdeditions.23538

  9. García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S.: Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198, 20–36 (2013). https://doi.org/10.1016/j.geomorph.2013.05.023

    Article  Google Scholar 

  10. Salvati, L., Zitti, M., Perini, L.: Fifty years on: long-term patterns of land sensitivity to desertification in Italy. L. Degrad. Dev. 27, 97–107 (2016). https://doi.org/10.1002/ldr.2226

    Article  Google Scholar 

  11. Keesstra, S.D., et al.: The significance of soils and soil science towards realization of the united nations sustainable development goals. Soil 2, 111–128 (2016). https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  12. Jónsson, J.Ö.G., Davídsdóttir, B.: Classification and valuation of soil ecosystem services (2016). https://doi.org/10.1016/j.agsy.2016.02.010

  13. Van der Knijff, J.M., Jones, R.J.A., Montanarella, L.: European soil bureau soil erosion risk assessment in Italy (2000)

    Google Scholar 

  14. Clarke, M.L., Rendell, H.M.: The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. Catena 40, 229–250 (2000). https://doi.org/10.1016/S0341-8162(99)00047-8

    Article  Google Scholar 

  15. Capolongo, D., Mannaerts, C.M.: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy) hydroclimate reconstrucion in the last centuries view project. Artic. J. Hydrol. (2008). https://doi.org/10.1016/j.jhydrol.2008.04.002

  16. Bentivenga, M., Piccarreta, M.: Geomorphology of Pisticci area (Basilicata, Southern Italy). J. Maps. 12, 220–226 (2016). https://doi.org/10.1080/17445647.2016.1193776

    Article  Google Scholar 

  17. Piccarreta, M., Capolongo, D., Boenzi, F., Bentivenga, M.: Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena. 138–151 (2006). https://doi.org/10.1016/j.catena.2005.11.005

  18. Pascale, S., et al.: Landslide susceptibility mapping using artificial neural network in the urban area of senise and san costantino albanese (Basilicata, Southern Italy). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 473–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_34

    Chapter  Google Scholar 

  19. Sediment Delivery Ratio—InVEST 3.6.0 documentation. http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/sdr.html#quantitative-valuation. Accessed 27 Mar 2020

  20. Borrelli, P., et al.: An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 1–13 (2017). https://doi.org/10.1038/s41467-017-02142-7

    Article  Google Scholar 

  21. Hamel, P., Chaplin-Kramer, R., Sim, S., Mueller, C.: A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015). https://doi.org/10.1016/j.scitotenv.2015.04.027

  22. Rendell, H.M.: Soil erosion and land degradation in southern Italy. In: Fantechi, R., Margaris, N.S. (eds.) Desertification in Europe, pp. 184–193. Springer, Netherlands (1986). https://doi.org/10.1007/978-94-009-4648-4_19

    Chapter  Google Scholar 

  23. Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in basilicata region. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8

    Chapter  Google Scholar 

  24. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Territorial fragmentation and renewable energy source plants: which relationship? Sustain. 12, 1828 (2020). https://doi.org/10.3390/SU12051828

    Article  Google Scholar 

  25. Scorza, F., Saganeiti, L., Pilogallo, A., Murgante, B.: Ghost Planning: the inefficiency of energy sector policies in a low population density region. Arch. DI Stud. URBANI E Reg. In press (2020)

    Google Scholar 

  26. Cotecchia, V., Del Prete, M.: Essai de zonage géotechnique d’une région de structure complexe dans le sud des Apennins (Basilicate) avec particuliere référence a la stabilité des pentes. Bull. Int. Assoc. Eng. Geol.- Bull. l’Assoc. Int. Géol. l’Ingénieur 15(1), 51–58 (1977). https://doi.org/10.1007/BF02592647

    Article  Google Scholar 

  27. Liberti, M., Simoniello, T., Carone, M.T., Coppola, R., D’Emilio, M., Macchiato, M.: Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data. Geomorphology 106, 333–343 (2009). https://doi.org/10.1016/j.geomorph.2008.11.012

    Article  Google Scholar 

  28. Grippa, A., et al.: Use of the HVSR method to detect buried paleomorphologies (filled incised-valleys) below a coastal plain: the case of the Metaponto plain (Basilicata, southern Italy) (2011). https://doi.org/10.4430/bgta0011

  29. Piccarreta, M., Lazzari, M., Pasini, A.: Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int. J. Climatol. 35, 1964–1975 (2015). https://doi.org/10.1002/joc.4101

    Article  Google Scholar 

  30. Piccarreta, M., Pasini, A., Capolongo, D., Lazzari, M.: Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: the Basilicata region, southern Italy. Int. J. Climatol. 33, 3229–3248 (2013). https://doi.org/10.1002/joc.3670

    Article  Google Scholar 

  31. Lazzari, M., Piccarreta, M.: Landslide disasters triggered by extreme rainfall events: the case of montescaglioso (Basilicata, Southern Italy). Geosciences 8, 377 (2018). https://doi.org/10.3390/geosciences8100377

    Article  Google Scholar 

  32. Lazzari, M., Geraldi, E., Lapenna, V., Loperte, A.: Natural hazards vs human impact: an integrated methodological approach in geomorphological risk assessment on the Tursi historical site, Southern Italy. Landslides 3, 275–287 (2006). https://doi.org/10.1007/s10346-006-0055-y

    Article  Google Scholar 

  33. Piccarreta, M., Capolongo, D., Miccoli, M.N., Bentivenga, M.: Global change and long-term gully sediment production dynamics in Basilicata, southern Italy. Environ. Earth Sci. 67, 1619–1630 (2012). https://doi.org/10.1007/s12665-012-1603-5

    Article  Google Scholar 

  34. Capolongo, D., Pennetta, L., Piccarreta, M., Fallacara, G., Boenzi, F.: Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy). Earth Surf. Process. Landform. 33, 364–379 (2008). https://doi.org/10.1002/esp.1560

    Article  Google Scholar 

  35. Costantini, E.A.C., Lorenzetti, R.: Soil degradation processes in the Italian agricultural and forest ecosystems (2013). https://doi.org/10.4081/ija.2013.e28

  36. Oliver, S.: The causes of erosive land degradation in the Basilicata Region of Italy (1999). https://www.jstor.org/stable/40573338. https://doi.org/10.2307/40573338

  37. Kelly, C., et al.: Community resilience and land degradation in forest and shrubland socio-ecological systems: evidence from Gorgoglione, Basilicata, Italy. Land use policy. 46, 11–20 (2015). https://doi.org/10.1016/J.LANDUSEPOL.2015.01.026

    Article  Google Scholar 

  38. Lanorte, A., Belviso, C., Lasaponara, R., Cavalcante, F., De Santis, F., Aromando, A.: Satellite time series and in situ data analysis for assessing landslide susceptibility after forest fire: preliminary results focusing the case study of pisticci (Matera, Italy). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 652–662. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_47

    Chapter  Google Scholar 

  39. Lasaponara, R., et al.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). https://doi.org/10.3390/su9040572

    Article  Google Scholar 

  40. Lasaponara, R., Tucci, B., Ghermandi, L.: On the use of satellite sentinel 2 data for automatic mapping of burnt areas and burn severity. Sustainability 10, 3889 (2018). https://doi.org/10.3390/su10113889

    Article  Google Scholar 

  41. Nearing, M.A., Lane, L.J., Lopes, V.L.: Modeling Soil Erosion. Routledge (2018). https://doi.org/10.1201/9780203739358-6

  42. Pandey, A., Himanshu, S.K., Mishra, S.K., Singh, V.P.: Physically based soil erosion and sediment yield models revisited (2016). https://doi.org/10.1016/j.catena.2016.08.002

  43. Ali, K.F., De Boer, D.H.: Spatially distributed erosion and sediment yield modeling in the upper Indus River basin. Water Resour. Res. 46 (2010). https://doi.org/10.1029/2009WR008762

  44. Diodato, N., Grauso, S.: An improved correlation model for sediment delivery ratio assessment. Environ. Earth Sci. 59, 223–231 (2009). https://doi.org/10.1007/s12665-009-0020-x

    Article  Google Scholar 

  45. de Vente, J., et al.: Predicting soil erosion and sediment yield at regional scales: where do we stand? (2013). https://doi.org/10.1016/j.earscirev.2013.08.014

  46. Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M.: Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138, 74–88 (2012). https://doi.org/10.1016/j.geomorph.2011.08.026

    Article  Google Scholar 

  47. Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P.: RUSLE: revised universal soil loss equation. J. Soil Water Conserv. 46, 30–33 (1991)

    Google Scholar 

  48. Borselli, L., Cassi, P., Torri, D.: Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75, 268–277 (2008). https://doi.org/10.1016/j.catena.2008.07.006

    Article  Google Scholar 

  49. Borselli, L., Torri, D., Poesen, J., Iaquinta, P.: A robust algorithm for estimating soil erodibility in different climates. Catena 97, 85–94 (2012). https://doi.org/10.1016/j.catena.2012.05.012

    Article  Google Scholar 

  50. Jamshidi, R., Dragovich, D., Webb, A.A.: Estimating catchment-scale annual soil loss in managed native eucalypt forests, Australia. For. Ecol. Manage. 304, 20–32 (2013). https://doi.org/10.1016/j.foreco.2013.04.032

    Article  Google Scholar 

  51. Panagos, P., et al.: Rainfall erosivity in Europe. Sci. Total Environ. 511, 801–814 (2015). https://doi.org/10.1016/j.scitotenv.2015.01.008

    Article  Google Scholar 

  52. Ekern, P.C.: Rainfall intensity as a measure of storm erosivity. Soil Sci. Soc. Am. J. 18, 212–216 (1954). https://doi.org/10.2136/sssaj1954.03615995001800020025x

    Article  Google Scholar 

  53. Diodato, N.: Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Eur. Geosci. Union. 8, 103–107 (2004)

    Google Scholar 

  54. Wischmeier, W.H., Smith, D.D.: Predicting rainfall erosion losses - a guide to conservation planning (1978)

    Google Scholar 

  55. Renard, K.G., Freimund, J.R.: Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 157, 287–306 (1994). https://doi.org/10.1016/0022-1694(94)90110-4

    Article  Google Scholar 

  56. Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C.: Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (Rusle) (1997)

    Google Scholar 

  57. Pintaldi, E., D’Amico, M.E., Stanchi, S., Catoni, M., Freppaz, M., Bonifacio, E.: Humus forms affect soil susceptibility to water erosion in the Western Italian Alps. Appl. Soil. Ecol. 123, 478–483 (2018). https://doi.org/10.1016/j.apsoil.2017.04.007

    Article  Google Scholar 

  58. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Energy landscape fragmentation: Basilicata Region (Italy) study case. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 692–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_50

    Chapter  Google Scholar 

  59. Six, J., Elliott, E.T., Paustian, K.: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 64, 1042–1049 (2000). https://doi.org/10.2136/sssaj2000.6431042x

    Article  Google Scholar 

  60. Loch, R.J., Rosewell, C.J.: Laboratory methods for measurement of soil erodibilities (K factors) for the universal soil loss equation. Aust. J. Soil Res. 30, 233–248 (1992). https://doi.org/10.1071/SR9920233

    Article  Google Scholar 

  61. Wall, G.J., Dickinson, W.T., Rudra, R.P., Coote, D.R.: Seasonal soil erodibility variation in southwestern Ontario. Can. J. Soil Sci. 68, 417–424 (1988). https://doi.org/10.4141/cjss88-038

    Article  Google Scholar 

  62. Giovannini, G., Vallejo, R., Lucchesi, S., Bautista, S., Ciompi, S., Llovet, J.: Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. For. Ecol. Manage. 147, 15–23 (2001). https://doi.org/10.1016/S0378-1127(00)00437-0

    Article  Google Scholar 

  63. Moody, J.A., Martin, D.A.: Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA. Hydrol. Process. 15, 2981–2993 (2001). https://doi.org/10.1002/hyp.386

    Article  Google Scholar 

  64. Lanorte, A., et al.: Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomat. Nat. Hazards Risk. 10, 1563–1595 (2019). https://doi.org/10.1080/19475705.2019.1578271

    Article  Google Scholar 

  65. Myronidis, D.I., Emmanouloudis, D.A., Mitsopoulos, I.A., Riggos, E.E.: Soil erosion potential after fire and rehabilitation treatments in Greece. Environ. Model. Assess. 15, 239–250 (2010). https://doi.org/10.1007/s10666-009-9199-1

    Article  Google Scholar 

  66. Bagarello, V., di Stefano, C., Ferro, V., Giordano, G., Iovino, M., Pampalone, V.: Estimating the USLE soil erodibility factor in sicily South Italy. Appl. Eng. Agric. 28, 199–206 (2012). https://doi.org/10.13031/2013.41347

    Article  Google Scholar 

  67. Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell, C.: Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci. Total Environ. 479–480, 189–200 (2014). https://doi.org/10.1016/j.scitotenv.2014.02.010

    Article  Google Scholar 

  68. Kinnell, P.I.A.: Event soil loss, runoff and the universal soil loss equation family of models: a review (2010). https://doi.org/10.1016/j.jhydrol.2010.01.024

  69. Lee, S.: Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: a case study at Boun, Korea. Environ. Geol. 45, 457–465 (2004). https://doi.org/10.1007/s00254-003-0897-8

    Article  Google Scholar 

  70. Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L.: Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48, 38–50 (2015). https://doi.org/10.1016/j.landusepol.2015.05.021

    Article  Google Scholar 

  71. Foster, G.R., Highfill, R.E.: Effect of terraces on soil loss: USLE P factor values for terraces. J. Soil Water Conserv. 38, 48–51 (1983)

    Google Scholar 

  72. Karydas, C.G., Sekuloska, T., Silleos, G.N.: Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess. 149, 19–28 (2009). https://doi.org/10.1007/s10661-008-0179-8

    Article  Google Scholar 

  73. Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E.H., Poesen, J., Alewell, C.: Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 51, 23–34 (2015). https://doi.org/10.1016/j.envsci.2015.03.012

    Article  Google Scholar 

  74. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 20–38 (2014). https://doi.org/10.4018/IJAEIS.2014040102

    Article  Google Scholar 

  75. Elfadaly, A., Attia, W., Qelichi, M.M., Murgante, B., Lasaponara, R.: Management of cultural heritage sites using remote sensing indices and spatial analysis techniques (2018). https://doi.org/10.1007/s10712-018-9489-8

  76. Karydas, C., Bouarour, O., Zdruli, P.: Mapping spatio-temporal soil erosion patterns in the Candelaro River Basin, Italy, using the G2 model with Sentinel2 imagery. Geosciences 10, 89 (2020). https://doi.org/10.3390/geosciences10030089

    Article  Google Scholar 

  77. Morgan, R.P.C.: Soil conservation options in the UK. Soil Use Manag. 8, 176–180 (1992). https://doi.org/10.1111/j.1475-2743.1992.tb00917.x

    Article  Google Scholar 

  78. Greiner, L., Keller, A., Grêt-Regamey, A., Papritz, A.: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land use policy 69, 224–237 (2017). https://doi.org/10.1016/j.landusepol.2017.06.025

    Article  Google Scholar 

  79. Jónsson, J.Ö.G.: Soil: ecosystem services, economic analysis and sustainability indicators (2019)

    Google Scholar 

  80. Salvati, L., Mancini, A., Bajocco, S., Gemmiti, R., Carlucci, M.: Socioeconomic development and vulnerability to land degradation in Italy. Reg. Environ. Chang. 11, 767–777 (2011). https://doi.org/10.1007/s10113-011-0209-x

    Article  Google Scholar 

  81. Mallinis, G., Gitas, I.Z., Tasionas, G., Maris, F.: Multitemporal monitoring of land degradation risk due to soil loss in a fire-prone mediterranean landscape using multi-decadal landsat imagery. Water Resour. Manag. 30(3), 1255–1269 (2016). https://doi.org/10.1007/s11269-016-1224-y

    Article  Google Scholar 

  82. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B., Pontrandolfi, P.: Comparing the territorial performances of renewable energy sources’ plants with an integrated ecosystem services loss assessment: a case study from the Basilicata region (Italy). Sustain. Cities Soc. 56, 102082 (2020)

    Article  Google Scholar 

  83. Attolico, A., Smaldone, R., Scorza, F., De Marco, E., Pilogallo, A.: Investigating good practices for low carbon development perspectives in basilicata. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 763–775. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_58

    Chapter  Google Scholar 

  84. Mazzariello, A., Pilogallo, A., Scorza, F., Murgante, B., Las Casas, G.: Carbon stock as an indicator for the estimation of anthropic pressure on territorial components. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 697–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_53

    Chapter  Google Scholar 

  85. Pilogallo, A., Saganeiti, L., Scorza, F., Las Casas, G.: Tourism attractiveness: main components for a spacial appraisal of major destinations according with ecosystem services approach. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_54

    Chapter  Google Scholar 

  86. Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustain. 10 (2018). https://doi.org/10.3390/su10093274

  87. Casas, G.L., Scorza, F.: Sustainable planning: a methodological toolkit. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 627–635. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_53

    Chapter  Google Scholar 

  88. Scorza, F., Grecu, V.: Assessing sustainability: research directions and relevant issues. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 642–647. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_55

    Chapter  Google Scholar 

  89. Dvarioniene, J., Grecu, V., Lai, S., Scorza, F.: Four perspectives of applied sustainability: research implications and possible integrations. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10409, pp. 554–563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62407-5_39

    Chapter  Google Scholar 

  90. Murgante, B., Borruso, G., Lapucci, A.: Sustainable development: concepts and methods for its application in urban and environmental planning. Stud. Comput. Intell. 348, 1–15 (2011). https://doi.org/10.1007/978-3-642-19733-8_1

    Article  Google Scholar 

  91. Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City. GET, pp. 275–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31157-9_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Pilogallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B. (2020). Soil Ecosystem Services and Sediment Production: The Basilicata Region Case Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics