Abstract
The conservation of soil and multiple ecosystem services it provides, is crucial for human well-being, for pursuing many of the Sustainable Development Goals and for addressing some of the most important challenges of our society. However several factors contribute to soil degradation, including climatic characteristics, lithological and morphological features and transformation processes. Only the last ones can be governed and that is the reason why spatial planning needs tools and analyses to interpret the role of land use changes in complex dynamics such as the erosive phenomena. This work presents the results obtained from the implementation of the InVEST SDR module on the territory of Basilicata Region and considering the evolution occurred between 1990 and 2018. Our outcomes show an intensification of erosion phenomena mainly along the Apennine chain and the coastal area of the Tyrrhenian Sea. Although this area corresponds to the higher average rainfall erosivity over the entire period, the most significant soil loss occurs in correspondence with unfavorable land use changes. The negative connotation typically associated with deforestation, conversion of agricultural soils to arable lands and thinning or total loss of vegetation becomes a measurable quantity, at least from one of several points of view.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kibblewhite, M.G., Ritz, K., Swift, M.J.: Soil health in agricultural systems (2008). https://doi.org/10.1098/rstb.2007.2178
Pereira, P., Bogunovic, I., Muñoz-Rojas, M., Brevik, E.C.: Soil ecosystem services, sustainability, valuation and management (2018). https://doi.org/10.1016/j.coesh.2017.12.003
Dominati, E., Patterson, M., Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69, 1858–1868 (2010). https://doi.org/10.1016/j.ecolecon.2010.05.002
Stringer, L.: Can the UN Convention to combat desertification guide sustainable use of the world’s soils? Front. Ecol. Environ. 6, 138–144 (2008). https://doi.org/10.1890/070060
Udawatta, R.P., Gantzer, C.J., Jose, S.: Agroforestry practices and soil ecosystem services. In: Soil Health and Intensification of Agroecosystems, pp. 305–333. Elsevier Inc. (2017). https://doi.org/10.1016/B978-0-12-805317-1.00014-2
Pascual, U., et al.: On the value of soil biodiversity and ecosystem services. Ecosyst. Serv. 15, 11–18 (2015). https://doi.org/10.1016/j.ecoser.2015.06.002
Gregory, A.S., et al.: A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 31, 1–15 (2015). https://doi.org/10.1111/sum.12212
Raclot, D., Bissonnais, Y.L., Annabi, M., Sabir, M.: Sub-chapter 2.3.3. Challenges for mitigating mediterranean soil erosion under global change. In: The Mediterranean region under climate change, pp. 311–318. IRD Éditions (2018). https://doi.org/10.4000/books.irdeditions.23538
García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S.: Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198, 20–36 (2013). https://doi.org/10.1016/j.geomorph.2013.05.023
Salvati, L., Zitti, M., Perini, L.: Fifty years on: long-term patterns of land sensitivity to desertification in Italy. L. Degrad. Dev. 27, 97–107 (2016). https://doi.org/10.1002/ldr.2226
Keesstra, S.D., et al.: The significance of soils and soil science towards realization of the united nations sustainable development goals. Soil 2, 111–128 (2016). https://doi.org/10.5194/soil-2-111-2016
Jónsson, J.Ö.G., Davídsdóttir, B.: Classification and valuation of soil ecosystem services (2016). https://doi.org/10.1016/j.agsy.2016.02.010
Van der Knijff, J.M., Jones, R.J.A., Montanarella, L.: European soil bureau soil erosion risk assessment in Italy (2000)
Clarke, M.L., Rendell, H.M.: The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. Catena 40, 229–250 (2000). https://doi.org/10.1016/S0341-8162(99)00047-8
Capolongo, D., Mannaerts, C.M.: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy) hydroclimate reconstrucion in the last centuries view project. Artic. J. Hydrol. (2008). https://doi.org/10.1016/j.jhydrol.2008.04.002
Bentivenga, M., Piccarreta, M.: Geomorphology of Pisticci area (Basilicata, Southern Italy). J. Maps. 12, 220–226 (2016). https://doi.org/10.1080/17445647.2016.1193776
Piccarreta, M., Capolongo, D., Boenzi, F., Bentivenga, M.: Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena. 138–151 (2006). https://doi.org/10.1016/j.catena.2005.11.005
Pascale, S., et al.: Landslide susceptibility mapping using artificial neural network in the urban area of senise and san costantino albanese (Basilicata, Southern Italy). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 473–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_34
Sediment Delivery Ratio—InVEST 3.6.0 documentation. http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/sdr.html#quantitative-valuation. Accessed 27 Mar 2020
Borrelli, P., et al.: An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 1–13 (2017). https://doi.org/10.1038/s41467-017-02142-7
Hamel, P., Chaplin-Kramer, R., Sim, S., Mueller, C.: A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015). https://doi.org/10.1016/j.scitotenv.2015.04.027
Rendell, H.M.: Soil erosion and land degradation in southern Italy. In: Fantechi, R., Margaris, N.S. (eds.) Desertification in Europe, pp. 184–193. Springer, Netherlands (1986). https://doi.org/10.1007/978-94-009-4648-4_19
Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in basilicata region. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8
Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Territorial fragmentation and renewable energy source plants: which relationship? Sustain. 12, 1828 (2020). https://doi.org/10.3390/SU12051828
Scorza, F., Saganeiti, L., Pilogallo, A., Murgante, B.: Ghost Planning: the inefficiency of energy sector policies in a low population density region. Arch. DI Stud. URBANI E Reg. In press (2020)
Cotecchia, V., Del Prete, M.: Essai de zonage géotechnique d’une région de structure complexe dans le sud des Apennins (Basilicate) avec particuliere référence a la stabilité des pentes. Bull. Int. Assoc. Eng. Geol.- Bull. l’Assoc. Int. Géol. l’Ingénieur 15(1), 51–58 (1977). https://doi.org/10.1007/BF02592647
Liberti, M., Simoniello, T., Carone, M.T., Coppola, R., D’Emilio, M., Macchiato, M.: Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data. Geomorphology 106, 333–343 (2009). https://doi.org/10.1016/j.geomorph.2008.11.012
Grippa, A., et al.: Use of the HVSR method to detect buried paleomorphologies (filled incised-valleys) below a coastal plain: the case of the Metaponto plain (Basilicata, southern Italy) (2011). https://doi.org/10.4430/bgta0011
Piccarreta, M., Lazzari, M., Pasini, A.: Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int. J. Climatol. 35, 1964–1975 (2015). https://doi.org/10.1002/joc.4101
Piccarreta, M., Pasini, A., Capolongo, D., Lazzari, M.: Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: the Basilicata region, southern Italy. Int. J. Climatol. 33, 3229–3248 (2013). https://doi.org/10.1002/joc.3670
Lazzari, M., Piccarreta, M.: Landslide disasters triggered by extreme rainfall events: the case of montescaglioso (Basilicata, Southern Italy). Geosciences 8, 377 (2018). https://doi.org/10.3390/geosciences8100377
Lazzari, M., Geraldi, E., Lapenna, V., Loperte, A.: Natural hazards vs human impact: an integrated methodological approach in geomorphological risk assessment on the Tursi historical site, Southern Italy. Landslides 3, 275–287 (2006). https://doi.org/10.1007/s10346-006-0055-y
Piccarreta, M., Capolongo, D., Miccoli, M.N., Bentivenga, M.: Global change and long-term gully sediment production dynamics in Basilicata, southern Italy. Environ. Earth Sci. 67, 1619–1630 (2012). https://doi.org/10.1007/s12665-012-1603-5
Capolongo, D., Pennetta, L., Piccarreta, M., Fallacara, G., Boenzi, F.: Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy). Earth Surf. Process. Landform. 33, 364–379 (2008). https://doi.org/10.1002/esp.1560
Costantini, E.A.C., Lorenzetti, R.: Soil degradation processes in the Italian agricultural and forest ecosystems (2013). https://doi.org/10.4081/ija.2013.e28
Oliver, S.: The causes of erosive land degradation in the Basilicata Region of Italy (1999). https://www.jstor.org/stable/40573338. https://doi.org/10.2307/40573338
Kelly, C., et al.: Community resilience and land degradation in forest and shrubland socio-ecological systems: evidence from Gorgoglione, Basilicata, Italy. Land use policy. 46, 11–20 (2015). https://doi.org/10.1016/J.LANDUSEPOL.2015.01.026
Lanorte, A., Belviso, C., Lasaponara, R., Cavalcante, F., De Santis, F., Aromando, A.: Satellite time series and in situ data analysis for assessing landslide susceptibility after forest fire: preliminary results focusing the case study of pisticci (Matera, Italy). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 652–662. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_47
Lasaponara, R., et al.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). https://doi.org/10.3390/su9040572
Lasaponara, R., Tucci, B., Ghermandi, L.: On the use of satellite sentinel 2 data for automatic mapping of burnt areas and burn severity. Sustainability 10, 3889 (2018). https://doi.org/10.3390/su10113889
Nearing, M.A., Lane, L.J., Lopes, V.L.: Modeling Soil Erosion. Routledge (2018). https://doi.org/10.1201/9780203739358-6
Pandey, A., Himanshu, S.K., Mishra, S.K., Singh, V.P.: Physically based soil erosion and sediment yield models revisited (2016). https://doi.org/10.1016/j.catena.2016.08.002
Ali, K.F., De Boer, D.H.: Spatially distributed erosion and sediment yield modeling in the upper Indus River basin. Water Resour. Res. 46 (2010). https://doi.org/10.1029/2009WR008762
Diodato, N., Grauso, S.: An improved correlation model for sediment delivery ratio assessment. Environ. Earth Sci. 59, 223–231 (2009). https://doi.org/10.1007/s12665-009-0020-x
de Vente, J., et al.: Predicting soil erosion and sediment yield at regional scales: where do we stand? (2013). https://doi.org/10.1016/j.earscirev.2013.08.014
Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M.: Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138, 74–88 (2012). https://doi.org/10.1016/j.geomorph.2011.08.026
Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P.: RUSLE: revised universal soil loss equation. J. Soil Water Conserv. 46, 30–33 (1991)
Borselli, L., Cassi, P., Torri, D.: Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75, 268–277 (2008). https://doi.org/10.1016/j.catena.2008.07.006
Borselli, L., Torri, D., Poesen, J., Iaquinta, P.: A robust algorithm for estimating soil erodibility in different climates. Catena 97, 85–94 (2012). https://doi.org/10.1016/j.catena.2012.05.012
Jamshidi, R., Dragovich, D., Webb, A.A.: Estimating catchment-scale annual soil loss in managed native eucalypt forests, Australia. For. Ecol. Manage. 304, 20–32 (2013). https://doi.org/10.1016/j.foreco.2013.04.032
Panagos, P., et al.: Rainfall erosivity in Europe. Sci. Total Environ. 511, 801–814 (2015). https://doi.org/10.1016/j.scitotenv.2015.01.008
Ekern, P.C.: Rainfall intensity as a measure of storm erosivity. Soil Sci. Soc. Am. J. 18, 212–216 (1954). https://doi.org/10.2136/sssaj1954.03615995001800020025x
Diodato, N.: Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Eur. Geosci. Union. 8, 103–107 (2004)
Wischmeier, W.H., Smith, D.D.: Predicting rainfall erosion losses - a guide to conservation planning (1978)
Renard, K.G., Freimund, J.R.: Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 157, 287–306 (1994). https://doi.org/10.1016/0022-1694(94)90110-4
Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C.: Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (Rusle) (1997)
Pintaldi, E., D’Amico, M.E., Stanchi, S., Catoni, M., Freppaz, M., Bonifacio, E.: Humus forms affect soil susceptibility to water erosion in the Western Italian Alps. Appl. Soil. Ecol. 123, 478–483 (2018). https://doi.org/10.1016/j.apsoil.2017.04.007
Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Energy landscape fragmentation: Basilicata Region (Italy) study case. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 692–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_50
Six, J., Elliott, E.T., Paustian, K.: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 64, 1042–1049 (2000). https://doi.org/10.2136/sssaj2000.6431042x
Loch, R.J., Rosewell, C.J.: Laboratory methods for measurement of soil erodibilities (K factors) for the universal soil loss equation. Aust. J. Soil Res. 30, 233–248 (1992). https://doi.org/10.1071/SR9920233
Wall, G.J., Dickinson, W.T., Rudra, R.P., Coote, D.R.: Seasonal soil erodibility variation in southwestern Ontario. Can. J. Soil Sci. 68, 417–424 (1988). https://doi.org/10.4141/cjss88-038
Giovannini, G., Vallejo, R., Lucchesi, S., Bautista, S., Ciompi, S., Llovet, J.: Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. For. Ecol. Manage. 147, 15–23 (2001). https://doi.org/10.1016/S0378-1127(00)00437-0
Moody, J.A., Martin, D.A.: Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA. Hydrol. Process. 15, 2981–2993 (2001). https://doi.org/10.1002/hyp.386
Lanorte, A., et al.: Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomat. Nat. Hazards Risk. 10, 1563–1595 (2019). https://doi.org/10.1080/19475705.2019.1578271
Myronidis, D.I., Emmanouloudis, D.A., Mitsopoulos, I.A., Riggos, E.E.: Soil erosion potential after fire and rehabilitation treatments in Greece. Environ. Model. Assess. 15, 239–250 (2010). https://doi.org/10.1007/s10666-009-9199-1
Bagarello, V., di Stefano, C., Ferro, V., Giordano, G., Iovino, M., Pampalone, V.: Estimating the USLE soil erodibility factor in sicily South Italy. Appl. Eng. Agric. 28, 199–206 (2012). https://doi.org/10.13031/2013.41347
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell, C.: Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci. Total Environ. 479–480, 189–200 (2014). https://doi.org/10.1016/j.scitotenv.2014.02.010
Kinnell, P.I.A.: Event soil loss, runoff and the universal soil loss equation family of models: a review (2010). https://doi.org/10.1016/j.jhydrol.2010.01.024
Lee, S.: Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: a case study at Boun, Korea. Environ. Geol. 45, 457–465 (2004). https://doi.org/10.1007/s00254-003-0897-8
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L.: Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48, 38–50 (2015). https://doi.org/10.1016/j.landusepol.2015.05.021
Foster, G.R., Highfill, R.E.: Effect of terraces on soil loss: USLE P factor values for terraces. J. Soil Water Conserv. 38, 48–51 (1983)
Karydas, C.G., Sekuloska, T., Silleos, G.N.: Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess. 149, 19–28 (2009). https://doi.org/10.1007/s10661-008-0179-8
Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E.H., Poesen, J., Alewell, C.: Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 51, 23–34 (2015). https://doi.org/10.1016/j.envsci.2015.03.012
Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 20–38 (2014). https://doi.org/10.4018/IJAEIS.2014040102
Elfadaly, A., Attia, W., Qelichi, M.M., Murgante, B., Lasaponara, R.: Management of cultural heritage sites using remote sensing indices and spatial analysis techniques (2018). https://doi.org/10.1007/s10712-018-9489-8
Karydas, C., Bouarour, O., Zdruli, P.: Mapping spatio-temporal soil erosion patterns in the Candelaro River Basin, Italy, using the G2 model with Sentinel2 imagery. Geosciences 10, 89 (2020). https://doi.org/10.3390/geosciences10030089
Morgan, R.P.C.: Soil conservation options in the UK. Soil Use Manag. 8, 176–180 (1992). https://doi.org/10.1111/j.1475-2743.1992.tb00917.x
Greiner, L., Keller, A., Grêt-Regamey, A., Papritz, A.: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land use policy 69, 224–237 (2017). https://doi.org/10.1016/j.landusepol.2017.06.025
Jónsson, J.Ö.G.: Soil: ecosystem services, economic analysis and sustainability indicators (2019)
Salvati, L., Mancini, A., Bajocco, S., Gemmiti, R., Carlucci, M.: Socioeconomic development and vulnerability to land degradation in Italy. Reg. Environ. Chang. 11, 767–777 (2011). https://doi.org/10.1007/s10113-011-0209-x
Mallinis, G., Gitas, I.Z., Tasionas, G., Maris, F.: Multitemporal monitoring of land degradation risk due to soil loss in a fire-prone mediterranean landscape using multi-decadal landsat imagery. Water Resour. Manag. 30(3), 1255–1269 (2016). https://doi.org/10.1007/s11269-016-1224-y
Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B., Pontrandolfi, P.: Comparing the territorial performances of renewable energy sources’ plants with an integrated ecosystem services loss assessment: a case study from the Basilicata region (Italy). Sustain. Cities Soc. 56, 102082 (2020)
Attolico, A., Smaldone, R., Scorza, F., De Marco, E., Pilogallo, A.: Investigating good practices for low carbon development perspectives in basilicata. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 763–775. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_58
Mazzariello, A., Pilogallo, A., Scorza, F., Murgante, B., Las Casas, G.: Carbon stock as an indicator for the estimation of anthropic pressure on territorial components. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 697–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_53
Pilogallo, A., Saganeiti, L., Scorza, F., Las Casas, G.: Tourism attractiveness: main components for a spacial appraisal of major destinations according with ecosystem services approach. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_54
Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustain. 10 (2018). https://doi.org/10.3390/su10093274
Casas, G.L., Scorza, F.: Sustainable planning: a methodological toolkit. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 627–635. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_53
Scorza, F., Grecu, V.: Assessing sustainability: research directions and relevant issues. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 642–647. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_55
Dvarioniene, J., Grecu, V., Lai, S., Scorza, F.: Four perspectives of applied sustainability: research implications and possible integrations. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10409, pp. 554–563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62407-5_39
Murgante, B., Borruso, G., Lapucci, A.: Sustainable development: concepts and methods for its application in urban and environmental planning. Stud. Comput. Intell. 348, 1–15 (2011). https://doi.org/10.1007/978-3-642-19733-8_1
Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City. GET, pp. 275–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31157-9_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B. (2020). Soil Ecosystem Services and Sediment Production: The Basilicata Region Case Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-58814-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58813-7
Online ISBN: 978-3-030-58814-4
eBook Packages: Computer ScienceComputer Science (R0)