Coupled Use of Hydrologic-Hydraulic Model and Geomorphological Descriptors for Flood-Prone Areas Evaluation: A Case Study of Lama Lamasinata | SpringerLink
Skip to main content

Coupled Use of Hydrologic-Hydraulic Model and Geomorphological Descriptors for Flood-Prone Areas Evaluation: A Case Study of Lama Lamasinata

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The delineation of flood risk maps is a fundamental step in planning urban areas management. This evaluation can be carried out by hydraulic/hydrological modelling that allows obtaining water depths and related flooded areas. In this way, it is possible to mitigate and contain the catastrophic effects of floods, which become more frequent in the last decades. These events result in losses of both human lives and assets. In addition, the growing availability of high-resolution topographic data (i.e. Digital Terrain Models - DTM), due to new technologies for measuring surface elevation, gave a strong impulse to the development of new techniques capable of providing rapid and reliable identification of flood susceptibility. In this study, two methodologies for mapping flood-prone areas in karst ephemeral streams in Puglia region (Southern Italy) are compared, highlighting how DTM-based technologies are a precious source of information in data-poor environments. Results are in perfect agreement with previous studies on similar areas, showing the marked influences of topography in defining flood-prone areas. These researches can also be useful in investigating a wider gamma of hydrological-related aspects, in particular with respect to the social behavior of communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Baldassarre, G., et al.: Debates - perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resour. Res. (2015). https://doi.org/10.1002/2014WR016416

    Article  Google Scholar 

  2. Gioia, A., Totaro, V., Bonelli, R., Esposito, A.A.M.G., Balacco, G., Iacobellis, V.: Flood susceptibility evaluation on ephemeral streams of Southern Italy: a case study of Lama Balice. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 334–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_27

    Chapter  Google Scholar 

  3. Iacobellis, V., et al.: Investigation of a flood event occurred on Lama Balice, in the context of hazard map evaluation in karstic-ephemeral streams. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 317–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_26

    Chapter  Google Scholar 

  4. Balacco, G., Totaro, V., Gioia, A., Piccinni, A.F.: Evaluation of geomorphic descriptors thresholds for flood prone areas detection on ephemeral streams in the metropolitan area of Bari (Italy). In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 239–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_19

    Chapter  Google Scholar 

  5. Apollonio, C., Delle Rose, M., Fidelibus, C., Orlanducci, L., Spasiano, D.: Water management problems in a karst flood-prone endorheic basin. Environ. Earth Sci. 77(19), 1–15 (2018). https://doi.org/10.1007/s12665-018-7866-8

    Article  Google Scholar 

  6. Fidelibus, M.D., Balacco, G., Gioia, A., Iacobellis, V., Spilotro, G.: Mass transport triggered by heavy rainfall: the role of endorheic basins and epikarst in a regional karst aquifer. Hydrol. Process. (2017). https://doi.org/10.1002/hyp.11037

    Article  Google Scholar 

  7. Balacco, G.: The interrill erosion for a sandy loam soil. Int. J. Sediment Res. (2013). https://doi.org/10.1016/S1001-6279(13)60043-8

    Article  Google Scholar 

  8. Apollonio, C., Balacco, G., Gioia, A., Iacobellis, V., Piccinni, A.F.: Flood hazard assessment of the Fortore River downstream the Occhito Dam, in Southern Italy. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 201–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_15

    Chapter  Google Scholar 

  9. Gioia, A., Manfreda, S., Iacobellis, V., Fiorentino, M.: Performance of a theoretical model for the description of water balance and runoff dynamics in Southern Italy. J. Hydrol. Eng. (2014). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000879

    Article  Google Scholar 

  10. Iacobellis, V., Fiorentino, M., Gioia, A., Manfreda, S.: Best fit and selection of theoretical flood frequency distributions based on different runoff generation mechanisms. Water (Switzerland) (2010). https://doi.org/10.3390/w2020239

    Article  Google Scholar 

  11. Gioia, A.: Reservoir routing on double-peak design flood. Water (Switzerland) (2016). https://doi.org/10.3390/w8120553

    Article  Google Scholar 

  12. Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index. In: Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy 2015) (2015). https://doi.org/10.1117/12.2192561

  13. Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Eur. J. Remote Sens. (2012). https://doi.org/10.5721/ItJRS20124418

    Article  Google Scholar 

  14. Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI (2014). https://doi.org/10.1117/12.2067185

  15. Mattia, F., et al.: Time series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In: International Geoscience and Remote Sensing Symposium (IGARSS) (2012). https://doi.org/10.1109/IGARSS.2012.6352738

  16. Balenzano, A., et al.: A ground network for SAR-derived soil moisture product calibration, validation and exploitation in Southern Italy. In: International Geoscience and Remote Sensing Symposium (IGARSS) (2014). https://doi.org/10.1109/IGARSS.2014.6947206

  17. Figorito, B., Tarantino, E., Balacco, G., Fratino, U.: An object-based method for mapping ephemeral river areas from WorldView-2 satellite data. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV (2012). https://doi.org/10.1117/12.974689

  18. Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_32

    Chapter  Google Scholar 

  19. Totaro, V., Gioia, A., Novelli, A., Caradonna, G.: The use of geomorphological descriptors and landsat-8 spectral indices data for flood areas evaluation: a case study of Lato River Basin. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 30–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_3

    Chapter  Google Scholar 

  20. Totaro, V., Peschechera, G., Gioia, A., Iacobellis, V., Fratino, U.: Comparison of satellite and geomorphic indices for flooded areas detection in a Mediterranean River Basin. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 173–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_14

    Chapter  Google Scholar 

  21. Annis, A., et al.: UAV-DEMs for small-scale flood hazard mapping. Water (2020). https://doi.org/10.3390/w12061717

    Article  Google Scholar 

  22. Pellicani, R., et al.: UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: the case study of the montescaglioso landslide (Southern Italy). Geosci. (2019). https://doi.org/10.3390/geosciences9060248

    Article  Google Scholar 

  23. Sangiorgio, V., Uva, G., Fatiguso, F., Adam, J.M.: A new index to evaluate exposure and potential damage to RC building structures incoastal areas. Eng. Fail. Anal. (2019). https://doi.org/10.1016/j.engfailanal.2019.02.052

    Article  Google Scholar 

  24. Sangiorgio, V., Pantoja, J.C., Varum, H., Uva, G., Fatiguso, F.: Structural degradation assessment of RC buildings: calibration and comparison of semeiotic-based methodology for decision support system. J. Perform. Constr. Facil. (2019). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001249

    Article  Google Scholar 

  25. Sangiorgio, V., Uva, G., Adam, J.M.: Integrated seismic vulnerability assessment of historical masonry churches including architectural and artistic assets based on macro-element approach. Int. J. Archit. Herit. (2020). https://doi.org/10.1080/15583058.2019.1709916

    Article  Google Scholar 

  26. Manfreda, S., et al.: Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J. Hydrol. (2014). https://doi.org/10.1016/j.jhydrol.2014.06.009

    Article  Google Scholar 

  27. Samela, C., Troy, T.J., Manfreda, S.: Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. (2017). https://doi.org/10.1016/j.advwatres.2017.01.007

    Article  Google Scholar 

  28. Manfreda, S., et al.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 79(2), 735–754 (2015). https://doi.org/10.1007/s11069-015-1869-5

    Article  Google Scholar 

  29. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Lioi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lioi, B., Gioia, A., Totaro, V., Balacco, G., Iacobellis, V., Chiaia, G. (2020). Coupled Use of Hydrologic-Hydraulic Model and Geomorphological Descriptors for Flood-Prone Areas Evaluation: A Case Study of Lama Lamasinata. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics