Analyzing the Driving Factors of Urban Transformation in the Province of Potenza (Basilicata Region-Italy) | SpringerLink
Skip to main content

Analyzing the Driving Factors of Urban Transformation in the Province of Potenza (Basilicata Region-Italy)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12252))

Included in the following conference series:

  • 1638 Accesses

Abstract

The main transformation dynamics in the province of Potenza territory (Basilicata region in the south of Italy) correspond to those of urban sprinkling. The urban sprinkling phenomena is typical of mainly mountainous internal areas with indices of settlement density and artificial coverage ratios very low. The temporal and spatial analysis of the urban sprinkling phenomenon gives a picture of the transformation dynamics of the territory, i.e. the phenomena of fragmentation and compaction of the urban territory. Through a logistic regression, the driving factors that have affected the dynamics of urban transformation and specifically the phenomena of fragmentation and compaction between 1998 and 2013 will be analyzed. The two transformation phenomena (dependent variables Y), will be analyzed separately and built on the basis of the variation of the sprinkling index in the analyzed period. In the model, eleven independent variables concerning physical characteristics, proximity analysis, socioeconomic characteristics and the urban policies or constraints, have been considered.

The result of the logistic regression consists of two probability maps of change of the dependent variable Y from non-urban to fragmented or compacted. The indexes of the relative operational characteristic (ROC) of 0.85 and 0.84 respectively for compaction and fragmentation, testify the goodness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Commission: Guidelines on best practice to limit, mitigate or compensate soil sealing (2012). https://doi.org/10.2779/75498

  2. European Union: FUTURE BRIEF: No net land take by 2050? (2016). https://doi.org/10.2779/537195

  3. Brown, L.A.: The city in 2050: a kaleidoscopic perspective. Appl. Geogr. 49, 4–11 (2014). https://doi.org/10.1016/j.apgeog.2013.09.003

    Article  Google Scholar 

  4. United Nations Department of Economic and Social Affairs/Population Division: World Urbanization Prospects The 2018 Revision (2018)

    Google Scholar 

  5. Cobbinah, P.B., Aboagye, H.N.: A Ghanaian twist to urban sprawl. Land Use Policy 61, 231–241 (2017). https://doi.org/10.1016/j.landusepol.2016.10.047

    Article  Google Scholar 

  6. Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M.: Why Italy first? Health, geographical and planning aspects of the Covid-19 outbreak. Preprints (2020). https://doi.org/10.20944/preprints202005.0075.v1

  7. Murgante, B., Las Casas, G., Sansone, A.: A spatial rough set for locating the periurban fringe (2007)

    Google Scholar 

  8. Rienow, A., Goetzke, R.: Supporting SLEUTH - enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban Syst. 49, 66–81 (2015). https://doi.org/10.1016/j.compenvurbsys.2014.05.001

    Article  Google Scholar 

  9. Saganeiti, L., et al.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 10, 3274 (2018). https://doi.org/10.3390/su10093274

    Article  Google Scholar 

  10. Angel, S., Parent, J., Civco, D.L., Blei, A., Potere, D.: The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Prog. Plann. 75, 53–107 (2011). https://doi.org/10.1016/j.progress.2011.04.001

    Article  Google Scholar 

  11. Siedentop, S., Fina, S.: Monitoring urban sprawl in Germany: towards a gis-based measurement and assessment approach. J. Land Use Sci. 5, 73–104 (2010). https://doi.org/10.1080/1747423X.2010.481075

    Article  Google Scholar 

  12. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 19–37 (2014). https://doi.org/10.4018/IJAEIS.2014040102

    Article  Google Scholar 

  13. Romano, B., Zullo, F., Fiorini, L., Marucci, A., Ciabò, S.: Land transformation of Italy due to half a century of urbanization. Land Use Policy 67, 387–400 (2017). https://doi.org/10.1016/j.landusepol.2017.06.006

    Article  Google Scholar 

  14. Xu, G., et al.: Urban expansion and form changes across African cities with a global outlook: spatiotemporal analysis of urban land densities. J. Clean. Prod. 224, 802–810 (2019). https://doi.org/10.1016/j.jclepro.2019.03.276

    Article  Google Scholar 

  15. Urbieta, P., Fernandez, E., Ramos, L., Méndez Martínez, G., Bento, R.: A land-cover based urban dispersion indicator suitable for highly dispersed, discontinuously artificialized territories: the case of continental Portugal. Land Use Policy 85, 92–103 (2019). https://doi.org/10.1016/J.LANDUSEPOL.2019.03.048

    Article  Google Scholar 

  16. Romano, B., Zullo, F., Fiorini, L., Ciabò, S., Marucci, A.: Sprinkling: an approach to describe urbanization dynamics in Italy. Sustainability 9, 97 (2017). https://doi.org/10.3390/su9010097

    Article  Google Scholar 

  17. Nechyba, T.J., Walsh, R.P.: Urban sprawl. J. Econ. Perspect. 18, 177–200 (2004). https://doi.org/10.1257/0895330042632681

    Article  Google Scholar 

  18. Saganeiti, L., Pilogallo, A., Scorza, F., Mussuto, G., Murgante, B.: Spatial indicators to evaluate urban fragmentation in Basilicata region. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_8

    Chapter  Google Scholar 

  19. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Territorial fragmentation and renewable energy source plants: which relationship? Sustainability 12, 1828 (2020). https://doi.org/10.3390/SU12051828

    Article  Google Scholar 

  20. Scorza, F., Saganeiti, L., Pilogallo, A., Murgante, B.: Ghost planning: the inefficiency of energy sector policies in a low population density region. Arch. DI Stud. URBANI E Reg. (2020). (in press)

    Google Scholar 

  21. Istat.it. https://www.istat.it/. Accessed 05 Apr 2019

  22. Traore, A., Watanabe, T.: Modeling determinants of urban growth in Conakry, Guinea: a spatial logistic approach. Urban Sci. 1, 12 (2017). https://doi.org/10.3390/urbansci1020012

    Article  Google Scholar 

  23. Salem, M., Tsurusaki, N., Divigalpitiya, P.: Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: a case study of the greater Cairo region. Infrastructures 4, 4 (2019). https://doi.org/10.3390/infrastructures4010004

    Article  Google Scholar 

  24. Martellozzo, F., Amato, F., Murgante, B., Clarke, K.C.: Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 91, 156–167 (2018). https://doi.org/10.1016/J.APGEOG.2017.12.004

    Article  Google Scholar 

  25. Statistiche economicheProvincia di POTENZA. https://ugeo.urbistat.com/AdminStat/it/it/economia/dati-sintesi/potenza/76/3. Accessed 08 May 2020

  26. Aldrich, J., Nelson, F.: Linear Probability, Logit, and Probit Models. SAGE Publications, Inc. (2011). https://doi.org/10.4135/9781412984744

  27. Clark, W.A., Hosking, P.L.: Statistical Methods for Geographers (Chapter 13). Consortium Erudit, New York (1986). https://doi.org/10.7202/021850ar

  28. Kock, N., Lynn, G.S.: Lateral collinearity and misleading results in variance-based SEM: an illustration and recommendations. J. Assoc. Inf. Syst. 13, 546–580 (2012). https://doi.org/10.17705/1jais.00302

    Article  Google Scholar 

  29. Belsley, D.A.: A Guide to using the collinearity diagnostics. Comput. Sci. Econ. Manag. 4, 33–50 (1991). https://doi.org/10.1007/BF00426854

    Article  MathSciNet  MATH  Google Scholar 

  30. Walsh, S.J.: Goodness-of-fit issues in ROC curve estimation. Med. Decis. Mak. 19, 193–201 (1999). https://doi.org/10.1177/0272989X9901900210

    Article  Google Scholar 

  31. Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City. GET, pp. 275–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31157-9_14

    Chapter  Google Scholar 

  32. Las Casas, G., Scorza, F., Murgante, B.: Razionalità a-priori: una proposta verso una pianificazione antifragile. Ital. J. Reg. Sci. 18, 329–338 (2019). https://doi.org/10.14650/93656

    Article  Google Scholar 

  33. Scorza, F., Grecu, V.: Assessing sustainability: research directions and relevant issues. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 642–647. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_55

    Chapter  Google Scholar 

  34. Murgante, B., Borruso, G., Lapucci, A.: Sustainable development: concepts and methods for its application in urban and environmental planning. Stud. Comput. Intell. 348, 1–15 (2011). https://doi.org/10.1007/978-3-642-19733-8_1

    Article  Google Scholar 

  35. Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., Murgante, B.: Energy landscape fragmentation: Basilicata region (Italy) study case. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 692–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_50

    Chapter  Google Scholar 

  36. Pilogallo, A., Saganeiti, L., Scorza, F., Murgante, B.: Ecosystem services’ based impact assessment for low carbon transition processes. TeMA - J. L. Use Mobil. Environ. 12, 127–138 (2019). https://doi.org/10.6092/1970-9870/6117

    Article  Google Scholar 

  37. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B., Pontrandolfi, P.: Comparing the territorial performances of renewable energy sources’ plants with an integrated ecosystem services loss assessment: a case study from the Basilicata region (Italy). Sustain. Cities Soc. 56, 102082 (2020). https://doi.org/10.1016/J.SCS.2020.102082

    Article  Google Scholar 

  38. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B.: Natura 2000 areas and sites of national interest (SNI): measuring (un)integration between naturalness preservation and environmental remediation policies. Sustainability 12, 2928 (2020). https://doi.org/10.3390/su12072928

    Article  Google Scholar 

  39. Manganelli, B., Murgante, B., Saganeiti, L.: The social cost of urban sprinkling. Sustainability 12, 2236 (2020). https://doi.org/10.3390/SU12062236

    Article  Google Scholar 

  40. Dvarioniene, J., Grecu, V., Lai, S., Scorza, F.: Four perspectives of applied sustainability: research implications and possible integrations. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10409, pp. 554–563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62407-5_39

    Chapter  Google Scholar 

  41. Lasaponara, R., et al.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). https://doi.org/10.3390/su9040572

    Article  Google Scholar 

  42. Pascale, S., et al.: Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 473–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_34

    Chapter  Google Scholar 

  43. Elfadaly, A., Attia, W., Qelichi, M.M., Murgante, B., Lasaponara, R.: Management of cultural heritage sites using remote sensing indices and spatial analysis techniques. Surv. Geophys. 39(6), 1347–1377 (2018). https://doi.org/10.1007/s10712-018-9489-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Saganeiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ieluzzi, A., Saganeiti, L., Pilogallo, A., Scorza, F., Murgante, B. (2020). Analyzing the Driving Factors of Urban Transformation in the Province of Potenza (Basilicata Region-Italy). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics